Suppr超能文献

基于临床和影像数据的新冠肺炎自动严重程度评估机器学习方法的开发与验证:回顾性研究

Development and Validation of a Machine Learning Approach for Automated Severity Assessment of COVID-19 Based on Clinical and Imaging Data: Retrospective Study.

作者信息

Quiroz Juan Carlos, Feng You-Zhen, Cheng Zhong-Yuan, Rezazadegan Dana, Chen Ping-Kang, Lin Qi-Ting, Qian Long, Liu Xiao-Fang, Berkovsky Shlomo, Coiera Enrico, Song Lei, Qiu Xiaoming, Liu Sidong, Cai Xiang-Ran

机构信息

Centre for Health Informatics, Australian Institute of Health Innovation, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, Australia.

Centre for Big Data Research in Health, University of New South Wales, Sydney, Australia.

出版信息

JMIR Med Inform. 2021 Feb 11;9(2):e24572. doi: 10.2196/24572.

Abstract

BACKGROUND

COVID-19 has overwhelmed health systems worldwide. It is important to identify severe cases as early as possible, such that resources can be mobilized and treatment can be escalated.

OBJECTIVE

This study aims to develop a machine learning approach for automated severity assessment of COVID-19 based on clinical and imaging data.

METHODS

Clinical data-including demographics, signs, symptoms, comorbidities, and blood test results-and chest computed tomography scans of 346 patients from 2 hospitals in the Hubei Province, China, were used to develop machine learning models for automated severity assessment in diagnosed COVID-19 cases. We compared the predictive power of the clinical and imaging data from multiple machine learning models and further explored the use of four oversampling methods to address the imbalanced classification issue. Features with the highest predictive power were identified using the Shapley Additive Explanations framework.

RESULTS

Imaging features had the strongest impact on the model output, while a combination of clinical and imaging features yielded the best performance overall. The identified predictive features were consistent with those reported previously. Although oversampling yielded mixed results, it achieved the best model performance in our study. Logistic regression models differentiating between mild and severe cases achieved the best performance for clinical features (area under the curve [AUC] 0.848; sensitivity 0.455; specificity 0.906), imaging features (AUC 0.926; sensitivity 0.818; specificity 0.901), and a combination of clinical and imaging features (AUC 0.950; sensitivity 0.764; specificity 0.919). The synthetic minority oversampling method further improved the performance of the model using combined features (AUC 0.960; sensitivity 0.845; specificity 0.929).

CONCLUSIONS

Clinical and imaging features can be used for automated severity assessment of COVID-19 and can potentially help triage patients with COVID-19 and prioritize care delivery to those at a higher risk of severe disease.

摘要

背景

新型冠状病毒肺炎(COVID-19)已使全球卫生系统不堪重负。尽早识别重症病例很重要,以便能够调动资源并加强治疗。

目的

本研究旨在开发一种基于临床和影像数据的机器学习方法,用于对COVID-19进行自动严重程度评估。

方法

利用来自中国湖北省两家医院的346例患者的临床数据(包括人口统计学信息、体征、症状、合并症和血液检测结果)以及胸部计算机断层扫描,开发用于诊断COVID-19病例自动严重程度评估的机器学习模型。我们比较了多个机器学习模型的临床和影像数据的预测能力,并进一步探索了使用四种过采样方法来解决分类不均衡问题。使用夏普利值加性解释框架确定具有最高预测能力的特征。

结果

影像特征对模型输出的影响最大,而临床和影像特征的组合总体表现最佳。识别出的预测特征与先前报道的特征一致。尽管过采样产生了混合结果,但在我们的研究中它实现了最佳的模型性能。区分轻症和重症病例的逻辑回归模型在临床特征方面表现最佳(曲线下面积[AUC]为0.848;灵敏度为0.455;特异性为0.906),影像特征方面(AUC为0.926;灵敏度为0.818;特异性为0.901),以及临床和影像特征组合方面(AUC为0.950;灵敏度为0.764;特异性为0.919)。合成少数过采样方法进一步提高了使用组合特征的模型性能(AUC为0.960;灵敏度为0.845;特异性为0.929)。

结论

临床和影像特征可用于COVID-19的自动严重程度评估,并可能有助于对COVID-19患者进行分诊,并优先为重症风险较高的患者提供护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验