Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
Faculty of Human Environments, University of Human Environments, Okazaki 444-3505, Japan.
Sensors (Basel). 2021 Jul 4;21(13):4577. doi: 10.3390/s21134577.
The rapid development of ubiquitous mobile computing has enabled the collection of new types of massive traffic data to understand collective movement patterns in social spaces. Contributing to the understanding of crowd formation and dispersal in populated areas, we developed a model of visitors' dynamic agglomeration patterns at a particular event using dynamic population data. This information, a type of big data, comprised aggregate Global Positioning System (GPS) location data automatically collected from mobile phones without users' intervention over a grid with a spatial resolution of 250 m. Herein, spatial autoregressive models with two-step adjacency matrices are proposed to represent visitors' movement between grids around the event site. We confirmed that the proposed models had a higher goodness-of-fit than those without spatial or temporal autocorrelations. The results also show a significant reduction in accuracy when applied to prediction with estimated values of the endogenous variables of prior time periods.
无处不在的移动计算的快速发展使得收集新型大规模交通数据成为可能,从而可以帮助我们了解社会空间中的集体运动模式。本研究使用动态人口数据,开发了一种特定事件下游客动态聚集模式的模型,该模型有助于我们理解人口密集地区的人群形成和分散。该信息是一种大数据,由从没有用户干预的移动电话自动收集的聚合 GPS 位置数据组成,这些数据在具有 250 米空间分辨率的网格上进行了汇总。本文提出了具有两步邻接矩阵的空间自回归模型,用于表示事件现场周围网格之间游客的移动。我们确认,与没有空间或时间自相关的模型相比,所提出的模型具有更高的拟合优度。结果还表明,在应用于预测时,当使用前一时段的内生变量的估计值时,准确性会显著降低。