Chen Xihao, Yu Jingya, Cheng Shenghua, Geng Xiebo, Liu Sibo, Han Wei, Hu Junbo, Chen Li, Liu Xiuli, Zeng Shaoqun
Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China.
Women and Children Hospital of Hubei Province, Wuhan, Hubei, China.
Comput Struct Biotechnol J. 2021 Jun 24;19:3852-3863. doi: 10.1016/j.csbj.2021.06.025. eCollection 2021.
Diverse styles of cytopathology images have a negative effect on the generalization ability of automated image analysis algorithms. This article proposes an unsupervised method to normalize cytopathology image styles. We design a two-stage style normalization framework with a style removal module to convert the colorful cytopathology image into a gray-scale image with a color-encoding mask and a domain adversarial style reconstruction module to map them back to a colorful image with user-selected style. Our method enforces both hue and structure consistency before and after normalization by using the color-encoding mask and per-pixel regression. Intra-domain and inter-domain adversarial learning are applied to ensure the style of normalized images consistent with the user-selected for input images of different domains. Our method shows superior results against current unsupervised color normalization methods on six cervical cell datasets from different hospitals and scanners. We further demonstrate that our normalization method greatly improves the recognition accuracy of lesion cells on unseen cytopathology images, which is meaningful for model generalization.
不同风格的细胞病理学图像会对自动图像分析算法的泛化能力产生负面影响。本文提出一种无监督方法来对细胞病理学图像风格进行归一化。我们设计了一个两阶段的风格归一化框架,其中包括一个风格去除模块,用于将彩色细胞病理学图像转换为带有颜色编码掩码的灰度图像,以及一个域对抗风格重建模块,用于将它们映射回具有用户选择风格的彩色图像。我们的方法通过使用颜色编码掩码和逐像素回归,在归一化前后强制色调和结构一致性。应用域内和域间对抗学习,以确保归一化图像的风格与为不同域的输入图像用户选择的风格一致。在来自不同医院和扫描仪的六个宫颈细胞数据集上,我们的方法相对于当前无监督颜色归一化方法显示出卓越的结果。我们进一步证明,我们的归一化方法大大提高了对未见过的细胞病理学图像上病变细胞的识别准确率,这对模型泛化具有重要意义。