Suppr超能文献

机器学习模型的开发以及一种抗黄热病病毒新抗病毒化合物的发现。

Development of Machine Learning Models and the Discovery of a New Antiviral Compound against Yellow Fever Virus.

作者信息

Gawriljuk Victor O, Foil Daniel H, Puhl Ana C, Zorn Kimberley M, Lane Thomas R, Riabova Olga, Makarov Vadim, Godoy Andre S, Oliva Glaucius, Ekins Sean

机构信息

São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, São Paulo 13563-120, Brazil.

Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States.

出版信息

J Chem Inf Model. 2021 Aug 23;61(8):3804-3813. doi: 10.1021/acs.jcim.1c00460. Epub 2021 Jul 21.

Abstract

Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by infected mosquitoes. Large epidemics of YF occur when the virus is introduced into heavily populated areas with high mosquito density and low vaccination coverage. The lack of a specific small molecule drug treatment against YF as well as for homologous infections, such as zika and dengue, highlights the importance of these flaviviruses as a public health concern. With the advancement in computer hardware and bioactivity data availability, new tools based on machine learning methods have been introduced into drug discovery, as a means to utilize the growing high throughput screening (HTS) data generated to reduce costs and increase the speed of drug development. The use of predictive machine learning models using previously published data from HTS campaigns or data available in public databases, can enable the selection of compounds with desirable bioactivity and absorption, distribution, metabolism, and excretion profiles. In this study, we have collated cell-based assay data for yellow fever virus from the literature and public databases. The data were used to build predictive models with several machine learning methods that could prioritize compounds for in vitro testing. Five molecules were prioritized and tested in vitro from which we have identified a new pyrazolesulfonamide derivative with EC 3.2 μM and CC 24 μM, which represents a new scaffold suitable for hit-to-lead optimization that can expand the available drug discovery candidates for YF.

摘要

黄热病(YF)是一种由受感染蚊子传播的急性病毒性出血热疾病。当病毒传入蚊虫密度高且疫苗接种覆盖率低的人口密集地区时,就会发生大规模黄热病疫情。缺乏针对黄热病以及寨卡病毒和登革热等同源感染的特异性小分子药物治疗方法,凸显了这些黄病毒作为公共卫生问题的重要性。随着计算机硬件的进步和生物活性数据的可得性,基于机器学习方法的新工具已被引入药物研发领域,作为一种利用不断增长的高通量筛选(HTS)数据来降低成本并提高药物开发速度的手段。利用之前高通量筛选活动中发表的数据或公共数据库中可用的数据构建预测性机器学习模型,可以筛选出具有理想生物活性以及吸收、分布、代谢和排泄特征的化合物。在本研究中,我们从文献和公共数据库中整理了黄热病病毒基于细胞检测的数据。这些数据被用于通过多种机器学习方法构建预测模型,从而对用于体外测试的化合物进行优先级排序。我们对五个分子进行了优先级排序并进行了体外测试,从中鉴定出一种新的吡唑磺酰胺衍生物,其半数有效浓度(EC)为3.2 μM,半数细胞毒性浓度(CC)为24 μM,这代表了一种适合从活性分子到先导化合物优化的新骨架,可扩大黄热病可用的药物研发候选物范围。

相似文献

2
Yellow fever virus is susceptible to sofosbuvir both in vitro and in vivo.黄热病病毒在体外和体内均对索非布韦敏感。
PLoS Negl Trop Dis. 2019 Jan 30;13(1):e0007072. doi: 10.1371/journal.pntd.0007072. eCollection 2019 Jan.
3
Yellow fever: the recurring plague.黄热病:反复出现的瘟疫。
Crit Rev Clin Lab Sci. 2004;41(4):391-427. doi: 10.1080/10408360490497474.
6
Yellow fever: a reemerging threat.黄热病:一种再度出现的威胁。
Clin Lab Med. 2010 Mar;30(1):237-60. doi: 10.1016/j.cll.2010.01.001.
7
Purification of flavivirus VLPs by a two-step chomatographic process.两步层析法纯化黄病毒 VLPs。
Vaccine. 2019 Nov 8;37(47):7061-7069. doi: 10.1016/j.vaccine.2019.05.066. Epub 2019 Jun 11.
8
Global Risk and Elimination of Yellow Fever Epidemics.全球风险与黄热病消除
J Infect Dis. 2020 Jun 11;221(12):2026-2034. doi: 10.1093/infdis/jiz375.

引用本文的文献

9
The Commoditization of AI for Molecule Design.用于分子设计的人工智能商品化
Artif Intell Life Sci. 2022 Dec;2. doi: 10.1016/j.ailsci.2022.100031. Epub 2022 Jan 24.

本文引用的文献

1
The global burden of yellow fever.全球黄热病负担。
Elife. 2021 Mar 16;10:e64670. doi: 10.7554/eLife.64670.
4
Emerging Pandemic Diseases: How We Got to COVID-19.新发传染病:我们如何走到 COVID-19 这一步。
Cell. 2020 Sep 3;182(5):1077-1092. doi: 10.1016/j.cell.2020.08.021. Epub 2020 Aug 15.
6
7
Broad-Spectrum Antiviral Agents: A Crucial Pandemic Tool.广谱抗病毒药物:大流行的关键工具
Expert Rev Anti Infect Ther. 2019 Jul;17(7):467-470. doi: 10.1080/14787210.2019.1635009. Epub 2019 Jun 24.
10
Yellow fever virus is susceptible to sofosbuvir both in vitro and in vivo.黄热病病毒在体外和体内均对索非布韦敏感。
PLoS Negl Trop Dis. 2019 Jan 30;13(1):e0007072. doi: 10.1371/journal.pntd.0007072. eCollection 2019 Jan.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验