Suppr超能文献

人工智能在 ADME/Tox 中的机遇与挑战。

Opportunities and challenges using artificial intelligence in ADME/Tox.

机构信息

Novartis Institutes for Biomedical Research, Cambridge, MA, USA.

Relay Therapeutics, Cambridge, MA, USA.

出版信息

Nat Mater. 2019 May;18(5):418-422. doi: 10.1038/s41563-019-0332-5.

Abstract

A recent conference organized a panel of scientists representing small and big pharma companies, who work at the interface of machine learning (ML) and absorption, distribution, metabolism, excretion, and toxicology (ADME/Tox). With the recent rebirth of AI related to pharma, it is timely to present this collaborative commentary to capture the diverging opinions on the past, present and future role of AI for ADME/Tox and how it can be applied in newer areas such as nanomaterials.

摘要

最近的一次会议组织了一个由来自小型和大型制药公司的科学家组成的小组,他们在机器学习 (ML) 和吸收、分布、代谢、排泄和毒理学 (ADME/Tox) 的界面上工作。随着与制药相关的人工智能的最新复兴,及时提出这篇合作评论,以捕捉人们对过去、现在和未来人工智能在 ADME/Tox 中的作用的不同看法,以及它如何在纳米材料等新领域得到应用。

相似文献

1
Opportunities and challenges using artificial intelligence in ADME/Tox.
Nat Mater. 2019 May;18(5):418-422. doi: 10.1038/s41563-019-0332-5.
2
Artificial intelligence in drug design.
Sci China Life Sci. 2018 Oct;61(10):1191-1204. doi: 10.1007/s11427-018-9342-2. Epub 2018 Jul 18.
3
Rethinking Drug Repositioning and Development with Artificial Intelligence, Machine Learning, and Omics.
OMICS. 2019 Nov;23(11):539-548. doi: 10.1089/omi.2019.0151. Epub 2019 Oct 25.
4
Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery.
Chem Rev. 2019 Sep 25;119(18):10520-10594. doi: 10.1021/acs.chemrev.8b00728. Epub 2019 Jul 11.
5
Deep Learning in Drug Discovery.
Mol Inform. 2016 Jan;35(1):3-14. doi: 10.1002/minf.201501008. Epub 2015 Dec 30.
6
Exploiting machine learning for end-to-end drug discovery and development.
Nat Mater. 2019 May;18(5):435-441. doi: 10.1038/s41563-019-0338-z. Epub 2019 Apr 18.
8
Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging.
J Med Imaging Radiat Sci. 2019 Dec;50(4):477-487. doi: 10.1016/j.jmir.2019.09.005. Epub 2019 Oct 7.
9
The challenges of generalizability in artificial intelligence for ADME/Tox endpoint and activity prediction.
Expert Opin Drug Discov. 2021 Sep;16(9):1045-1056. doi: 10.1080/17460441.2021.1901685. Epub 2021 Mar 19.
10
The Artificial Intelligence-Powered New Era in Pharmaceutical Research and Development: A Review.
AAPS PharmSciTech. 2024 Aug 15;25(6):188. doi: 10.1208/s12249-024-02901-y.

引用本文的文献

1
Impact of artificial intelligence on academic performance in medical education: A systematic review.
J Educ Health Promot. 2025 Jul 4;14:234. doi: 10.4103/jehp.jehp_2071_23. eCollection 2025.
2
Applications of artificial intelligence in drug discovery for neurological diseases.
Neurotherapeutics. 2025 Jul;22(4):e00624. doi: 10.1016/j.neurot.2025.e00624. Epub 2025 Jun 17.
3
Advanced Artificial Intelligence Technologies Transforming Contemporary Pharmaceutical Research.
Bioengineering (Basel). 2025 Mar 31;12(4):363. doi: 10.3390/bioengineering12040363.
6
Artificial intelligence in drug development.
Nat Med. 2025 Jan;31(1):45-59. doi: 10.1038/s41591-024-03434-4. Epub 2025 Jan 20.
8
Machine Learning in Early Prediction of Metabolism of Drugs.
Methods Mol Biol. 2025;2834:275-291. doi: 10.1007/978-1-0716-4003-6_13.
9
Application of machine learning models for property prediction to targeted protein degraders.
Nat Commun. 2024 Jul 9;15(1):5764. doi: 10.1038/s41467-024-49979-3.
10
Screening oral drugs for their interactions with the intestinal transportome via porcine tissue explants and machine learning.
Nat Biomed Eng. 2024 Mar;8(3):278-290. doi: 10.1038/s41551-023-01128-9. Epub 2024 Feb 20.

本文引用的文献

2
Machine learning for molecular and materials science.
Nature. 2018 Jul;559(7715):547-555. doi: 10.1038/s41586-018-0337-2. Epub 2018 Jul 25.
3
Geometric Deep Learning Autonomously Learns Chemical Features That Outperform Those Engineered by Domain Experts.
Mol Pharm. 2018 Oct 1;15(10):4371-4377. doi: 10.1021/acs.molpharmaceut.7b01144. Epub 2018 Jul 7.
4
Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets.
Mol Pharm. 2017 Dec 4;14(12):4462-4475. doi: 10.1021/acs.molpharmaceut.7b00578. Epub 2017 Nov 13.
5
Demystifying Multitask Deep Neural Networks for Quantitative Structure-Activity Relationships.
J Chem Inf Model. 2017 Oct 23;57(10):2490-2504. doi: 10.1021/acs.jcim.7b00087. Epub 2017 Oct 2.
6
Is Multitask Deep Learning Practical for Pharma?
J Chem Inf Model. 2017 Aug 28;57(8):2068-2076. doi: 10.1021/acs.jcim.7b00146. Epub 2017 Aug 1.
7
Machine Learning Consensus Scoring Improves Performance Across Targets in Structure-Based Virtual Screening.
J Chem Inf Model. 2017 Jul 24;57(7):1579-1590. doi: 10.1021/acs.jcim.7b00153. Epub 2017 Jul 12.
8
Profile-QSAR 2.0: Kinase Virtual Screening Accuracy Comparable to Four-Concentration ICs for Realistically Novel Compounds.
J Chem Inf Model. 2017 Aug 28;57(8):2077-2088. doi: 10.1021/acs.jcim.7b00166. Epub 2017 Jul 26.
9
Shared Consensus Machine Learning Models for Predicting Blood Stage Malaria Inhibition.
J Chem Inf Model. 2017 Mar 27;57(3):445-453. doi: 10.1021/acs.jcim.6b00572. Epub 2017 Mar 17.
10
Chembench: A Publicly Accessible, Integrated Cheminformatics Portal.
J Chem Inf Model. 2017 Feb 27;57(2):105-108. doi: 10.1021/acs.jcim.6b00462. Epub 2017 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验