Suppr超能文献

直线加速器转换为电子 FLASH-RT 单元后的辐射屏蔽和安全影响。

Radiation shielding and safety implications following linac conversion to an electron FLASH-RT unit.

机构信息

University of Maryland School of Medicine, Baltimore, MD, USA.

McGill University, Montreal, QC, Canada.

出版信息

Med Phys. 2021 Sep;48(9):5396-5405. doi: 10.1002/mp.15105. Epub 2021 Aug 12.

Abstract

PURPOSE

Due to their finite range, electrons are typically ignored when calculating shielding requirements in megavoltage energy linear accelerator vaults. However, the assumption that 16 MeV electrons need not be considered does not hold when operated at FLASH-RT dose rates (~200× clinical dose rate), where dose rate from bremsstrahlung photons is an order of magnitude higher than that from an 18 MV beam for which shielding was designed. We investigate the shielding and radiation protection impact of converting a Varian 21EX linac to FLASH-RT dose rates.

METHODS

We performed a radiation survey in all occupied areas using a Fluke Biomedical Inovision 451P survey meter and a Wide Energy Neutron Detection Instrument (Wendi)-2 FHT 762 neutron detector. The dose rate from activated linac components following a 1.8-min FLASH-RT delivery was also measured.

RESULTS

When operated at a gantry angle of 180° such as during biology experiments, the 16 MeV FLASH-RT electrons deliver ~10 µSv/h in the controlled areas and 780 µSv/h in the uncontrolled areas, which is above the 20 µSv in any 1-h USNRC limit. However, to exceed 20 µSv, the unit must be operated continuously for 92 s, which corresponds in this bunker and FLASH-RT beam to a 3180 Gy workload at isocenter, which would be unfeasible to deliver within that timeframe due to experimental logistics. While beam steering and dosimetry activities can require workloads of that magnitude, during these activities, the gantry is positioned at 0° and the dose rate in the uncontrolled area becomes undetectable. Likewise, neutron activation of linac components can reach 25 µSv/h near the isocenter following FLASH-RT delivery, but dissipates within minutes, and total doses within an hour are below 20 µSv.

CONCLUSION

Bremsstrahlung photons created by a 16 MeV FLASH-RT electron beam resulted in consequential dose rates in controlled and uncontrolled areas, and from activated linac components in the vault. While our linac vault shielding proved sufficient, other investigators would be prudent to confirm the adequacy of their radiation safety program, particularly if operating in vaults designed for 6 MV.

摘要

目的

在计算兆伏级直线加速器机房的屏蔽要求时,由于电子的射程有限,通常会忽略电子。但是,当以 FLASH-RT 剂量率(约为临床剂量率的 200 倍)运行时,假设 16 MeV 电子不必考虑的假设并不成立,此时韧致辐射光子的剂量率比设计用于屏蔽的 18 MV 射线高一个数量级。我们研究了将瓦里安 21EX 直线加速器转换为 FLASH-RT 剂量率对屏蔽和辐射防护的影响。

方法

我们使用福禄克生物医学 Inovision 451P 测量仪和 Wide Energy Neutron Detection Instrument (Wendi)-2 FHT 762 中子探测器在所有占用区域进行了辐射调查。还测量了在进行 1.8 分钟的 FLASH-RT 输送后激活的直线加速器组件的剂量率。

结果

当在生物学实验等情况下以 180°的龙门角度运行时,16 MeV 的 FLASH-RT 电子在控制区域内输送约 10 µSv/h,在非控制区域内输送 780 µSv/h,超过了美国核监管委员会 20 µSv/h 的任何 1 小时限制。然而,要超过 20 µSv/h,单元必须连续运行 92 秒,这对应于这个掩体和 FLASH-RT 射束在等中心处的 3180 Gy 工作量,由于实验物流,在该时间范围内是不可行的。虽然束流转向和剂量测量活动可能需要这种规模的工作量,但在这些活动中,龙门架位于 0°,非控制区域的剂量率变得无法检测。同样,在 FLASH-RT 输送后,在等中心附近,直线加速器组件的中子激活可以达到 25 µSv/h,但在几分钟内消散,并且在一小时内的总剂量低于 20 µSv。

结论

16 MeV 的 FLASH-RT 电子束产生的韧致辐射光子在控制区和非控制区以及机房中的激活直线加速器组件中产生了相应的剂量率。虽然我们的直线加速器机房屏蔽证明是足够的,但其他研究人员最好确认他们的辐射安全计划的充分性,特别是如果在设计用于 6 MV 的机房中运行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验