Suppr超能文献

基于临床直线加速器的电子 FLASH:向 FLASH 临床试验实际转化的途径。

Clinical Linear Accelerator-Based Electron FLASH: Pathway for Practical Translation to FLASH Clinical Trials.

机构信息

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.

Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.

出版信息

Int J Radiat Oncol Biol Phys. 2023 Oct 1;117(2):482-492. doi: 10.1016/j.ijrobp.2023.04.011. Epub 2023 Apr 25.

Abstract

PURPOSE

Ultrahigh-dose-rate (UHDR) radiation therapy (RT) has produced the FLASH effect in preclinical models: reduced toxicity with comparable tumor control compared with conventional-dose-rate RT. Early clinical trials focused on UHDR RT feasibility using specialized devices. We explore the technical feasibility of practical electron UHDR RT on a standard clinical linear accelerator (LINAC).

METHODS AND MATERIALS

We tuned the program board of a decommissioned electron energy for UHDR electron delivery on a clinical LINAC without hardware modification. Pulse delivery was controlled using the respiratory gating interface. A short source-to-surface distance (SSD) electron setup with a standard scattering foil was configured and tested on an anthropomorphic phantom using circular blocks with 3- to 20-cm field sizes. Dosimetry was evaluated using radiochromic film and an ion chamber profiler.

RESULTS

UHDR open-field mean dose rates at 100, 80, 70, and 59 cm SSD were 36.82, 59.52, 82.01, and 112.83 Gy/s, respectively. At 80 cm SSD, mean dose rate was ∼60 Gy/s for all collimated field sizes, with an R80 depth of 6.1 cm corresponding to an energy of 17.5 MeV. Heterogeneity was <5.0% with asymmetry of 2.2% to 6.2%. The short SSD setup was feasible under realistic treatment conditions simulating broad clinical indications on an anthropomorphic phantom.

CONCLUSIONS

Short SSD and tuning for high electron beam current on a standard clinical LINAC can deliver flat, homogenous UHDR electrons over a broad, clinically relevant range of field sizes and depths with practical working distances in a configuration easily reversible to standard clinical use.

摘要

目的

超高剂量率(UHDR)放射治疗(RT)在临床前模型中产生了 FLASH 效应:与常规剂量率 RT 相比,毒性降低,肿瘤控制效果相当。早期临床试验侧重于使用专用设备进行 UHDR RT 的可行性。我们探索了在标准临床直线加速器(LINAC)上实现实用电子 UHDR RT 的技术可行性。

方法和材料

我们在没有硬件修改的情况下,调整了一台退役电子能量的程序板,以实现 UHDR 电子输送。使用呼吸门控接口控制脉冲输送。在一个人体模型上,使用带有标准散射箔的短源皮距(SSD)电子设置,并使用 3 至 20cm 射野大小的圆形块进行测试。使用放射性色膜和离子室剖面仪进行剂量测定。

结果

在 100、80、70 和 59cm SSD 处,UHDR 开放野平均剂量率分别为 36.82、59.52、82.01 和 112.83Gy/s。在 80cm SSD 处,所有准直射野大小的平均剂量率约为 60Gy/s,R80 深度为 6.1cm,对应的能量为 17.5MeV。不均匀性<5.0%,不对称性为 2.2%至 6.2%。在模拟广泛临床适应证的人体模型上,在真实治疗条件下,短 SSD 设置和对高电子束电流的调整可以在具有实际工作距离的配置中,提供平坦、均匀的 UHDR 电子,适用于广泛的临床相关射野大小和深度。

结论

在标准临床 LINAC 上进行短 SSD 调整和高电子束电流调谐,可以在实际工作距离的配置中,提供平坦、均匀的 UHDR 电子,适用于广泛的临床相关射野大小和深度,且易于恢复到标准临床使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验