Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
Int J Radiat Oncol Biol Phys. 2023 Oct 1;117(2):482-492. doi: 10.1016/j.ijrobp.2023.04.011. Epub 2023 Apr 25.
Ultrahigh-dose-rate (UHDR) radiation therapy (RT) has produced the FLASH effect in preclinical models: reduced toxicity with comparable tumor control compared with conventional-dose-rate RT. Early clinical trials focused on UHDR RT feasibility using specialized devices. We explore the technical feasibility of practical electron UHDR RT on a standard clinical linear accelerator (LINAC).
We tuned the program board of a decommissioned electron energy for UHDR electron delivery on a clinical LINAC without hardware modification. Pulse delivery was controlled using the respiratory gating interface. A short source-to-surface distance (SSD) electron setup with a standard scattering foil was configured and tested on an anthropomorphic phantom using circular blocks with 3- to 20-cm field sizes. Dosimetry was evaluated using radiochromic film and an ion chamber profiler.
UHDR open-field mean dose rates at 100, 80, 70, and 59 cm SSD were 36.82, 59.52, 82.01, and 112.83 Gy/s, respectively. At 80 cm SSD, mean dose rate was ∼60 Gy/s for all collimated field sizes, with an R80 depth of 6.1 cm corresponding to an energy of 17.5 MeV. Heterogeneity was <5.0% with asymmetry of 2.2% to 6.2%. The short SSD setup was feasible under realistic treatment conditions simulating broad clinical indications on an anthropomorphic phantom.
Short SSD and tuning for high electron beam current on a standard clinical LINAC can deliver flat, homogenous UHDR electrons over a broad, clinically relevant range of field sizes and depths with practical working distances in a configuration easily reversible to standard clinical use.
超高剂量率(UHDR)放射治疗(RT)在临床前模型中产生了 FLASH 效应:与常规剂量率 RT 相比,毒性降低,肿瘤控制效果相当。早期临床试验侧重于使用专用设备进行 UHDR RT 的可行性。我们探索了在标准临床直线加速器(LINAC)上实现实用电子 UHDR RT 的技术可行性。
我们在没有硬件修改的情况下,调整了一台退役电子能量的程序板,以实现 UHDR 电子输送。使用呼吸门控接口控制脉冲输送。在一个人体模型上,使用带有标准散射箔的短源皮距(SSD)电子设置,并使用 3 至 20cm 射野大小的圆形块进行测试。使用放射性色膜和离子室剖面仪进行剂量测定。
在 100、80、70 和 59cm SSD 处,UHDR 开放野平均剂量率分别为 36.82、59.52、82.01 和 112.83Gy/s。在 80cm SSD 处,所有准直射野大小的平均剂量率约为 60Gy/s,R80 深度为 6.1cm,对应的能量为 17.5MeV。不均匀性<5.0%,不对称性为 2.2%至 6.2%。在模拟广泛临床适应证的人体模型上,在真实治疗条件下,短 SSD 设置和对高电子束电流的调整可以在具有实际工作距离的配置中,提供平坦、均匀的 UHDR 电子,适用于广泛的临床相关射野大小和深度。
在标准临床 LINAC 上进行短 SSD 调整和高电子束电流调谐,可以在实际工作距离的配置中,提供平坦、均匀的 UHDR 电子,适用于广泛的临床相关射野大小和深度,且易于恢复到标准临床使用。