Suppr超能文献

评估 CASP14 中的模型精化。

Evaluation of model refinement in CASP14.

机构信息

Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.

Life Science, Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, Didcot, United Kingdom.

出版信息

Proteins. 2021 Dec;89(12):1852-1869. doi: 10.1002/prot.26185. Epub 2021 Jul 29.

Abstract

We report here an assessment of the model refinement category of the 14th round of Critical Assessment of Structure Prediction (CASP14). As before, predictors submitted up to five ranked refinements, along with associated residue-level error estimates, for targets that had a wide range of starting quality. The ability of groups to accurately rank their submissions and to predict coordinate error varied widely. Overall, only four groups out-performed a "naïve predictor" corresponding to the resubmission of the starting model. Among the top groups, there are interesting differences of approach and in the spread of improvements seen: some methods are more conservative, others more adventurous. Some targets were "double-barreled" for which predictors were offered a high-quality AlphaFold 2 (AF2)-derived prediction alongside another of lower quality. The AF2-derived models were largely unimprovable, many of their apparent errors being found to reside at domain and, especially, crystal lattice contacts. Refinement is shown to have a mixed impact overall on structure-based function annotation methods to predict nucleic acid binding, spot catalytic sites, and dock protein structures.

摘要

我们在此报告第十四轮结构预测关键评估(CASP14)模型细化类别评估结果。与以往一样,预测者提交了多达五个排名靠前的细化版本,以及与起始质量范围广泛的目标相关的残基级误差估计值。各团队准确对其提交内容进行排名并预测坐标误差的能力差异很大。总体而言,只有四个团队的表现优于对应重新提交起始模型的“天真预测器”。在顶级团队中,存在有趣的方法差异,改进程度也存在差异:一些方法更为保守,而另一些方法则更具冒险性。有些靶标是“双重”的,预测者提供了高质量的 AlphaFold 2(AF2)衍生预测以及另一个质量较低的预测。AF2 衍生模型在很大程度上无法改进,许多明显的错误被发现存在于结构域中,尤其是晶体晶格接触处。结果表明,细化对基于结构的功能注释方法的整体影响喜忧参半,这些方法可用于预测核酸结合、识别催化位点和对接蛋白质结构。

相似文献

1
Evaluation of model refinement in CASP14.评估 CASP14 中的模型精化。
Proteins. 2021 Dec;89(12):1852-1869. doi: 10.1002/prot.26185. Epub 2021 Jul 29.
3
Applying and improving AlphaFold at CASP14.应用和改进 AlphaFold 参加 CASP14。
Proteins. 2021 Dec;89(12):1711-1721. doi: 10.1002/prot.26257.
4
High-accuracy protein structure prediction in CASP14.在 CASP14 中进行高精度蛋白质结构预测。
Proteins. 2021 Dec;89(12):1687-1699. doi: 10.1002/prot.26171. Epub 2021 Jul 14.
7
Cryo-EM targets in CASP14.冷冻电镜目标在 CASP14 中。
Proteins. 2021 Dec;89(12):1949-1958. doi: 10.1002/prot.26216. Epub 2021 Sep 16.
8
Assessment of the CASP14 assembly predictions.CASP14 组装预测评估。
Proteins. 2021 Dec;89(12):1787-1799. doi: 10.1002/prot.26199. Epub 2021 Aug 31.

引用本文的文献

3
Role of environmental specificity in CASP results.环境特异性在 CASP 结果中的作用。
BMC Bioinformatics. 2023 Nov 11;24(1):425. doi: 10.1186/s12859-023-05559-8.
4
Tertiary structure assessment at CASP15.三级结构评估在 CASP15。
Proteins. 2023 Dec;91(12):1616-1635. doi: 10.1002/prot.26593. Epub 2023 Sep 25.
6
Protein Design: From the Aspect of Water Solubility and Stability.蛋白质设计:从水溶性和稳定性方面考虑。
Chem Rev. 2022 Sep 28;122(18):14085-14179. doi: 10.1021/acs.chemrev.1c00757. Epub 2022 Aug 3.

本文引用的文献

2
Assessing the utility of CASP14 models for molecular replacement.评估 CASP14 模型在分子置换中的效用。
Proteins. 2021 Dec;89(12):1752-1769. doi: 10.1002/prot.26214. Epub 2021 Aug 21.
10
The ClusPro web server for protein-protein docking.ClusPro 网页服务器,用于蛋白质-蛋白质对接。
Nat Protoc. 2017 Feb;12(2):255-278. doi: 10.1038/nprot.2016.169. Epub 2017 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验