Suppr超能文献

第 14 轮蛋白质结构预测关键评估(CASP14)中困难靶标模型的拓扑评估。

Topology evaluation of models for difficult targets in the 14th round of the critical assessment of protein structure prediction (CASP14).

机构信息

Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

Genome Center, University of California, Davis, California, USA.

出版信息

Proteins. 2021 Dec;89(12):1673-1686. doi: 10.1002/prot.26172. Epub 2021 Jul 23.

Abstract

This report describes the tertiary structure prediction assessment of difficult modeling targets in the 14th round of the Critical Assessment of Structure Prediction (CASP14). We implemented an official ranking scheme that used the same scores as the previous CASP topology-based assessment, but combined these scores with one that emphasized physically realistic models. The top performing AlphaFold2 group outperformed the rest of the prediction community on all but two of the difficult targets considered in this assessment. They provided high quality models for most of the targets (86% over GDT_TS 70), including larger targets above 150 residues, and they correctly predicted the topology of almost all the rest. AlphaFold2 performance was followed by two manual Baker methods, a Feig method that refined Zhang-server models, two notable automated Zhang server methods (QUARK and Zhang-server), and a Zhang manual group. Despite the remarkable progress in protein structure prediction of difficult targets, both the prediction community and AlphaFold2, to a lesser extent, faced challenges with flexible regions and obligate oligomeric assemblies. The official ranking of top-performing methods was supported by performance generated PCA and heatmap clusters that gave insight into target difficulties and the most successful state-of-the-art structure prediction methodologies.

摘要

这份报告描述了第 14 轮结构预测关键评估(CASP14)中对建模困难目标的三级结构预测评估。我们实施了一个官方排名方案,该方案使用与之前基于拓扑结构的 CASP 评估相同的分数,但将这些分数与强调物理现实模型的分数相结合。在本次评估中考虑的所有困难目标中,除了两个目标之外,表现最好的 AlphaFold2 小组在所有目标上的表现都优于预测社区的其他成员。他们为大多数目标(超过 GDT_TS 70 的 86%)提供了高质量的模型,包括超过 150 个残基的较大目标,并且几乎正确预测了其余所有目标的拓扑结构。AlphaFold2 的表现紧随其后的是两种手动 Baker 方法、一种改进 Zhang-server 模型的 Feig 方法、两种著名的自动化 Zhang server 方法(QUARK 和 Zhang-server),以及一种 Zhang 手动小组。尽管在困难目标的蛋白质结构预测方面取得了显著进展,但预测社区和 AlphaFold2(在较小程度上)都面临着与柔性区域和必需寡聚体组装相关的挑战。官方排名方案的制定是基于 PCA 和热图聚类的性能,这些性能为目标难度和最成功的最新结构预测方法提供了深入的了解。

相似文献

3
Applying and improving AlphaFold at CASP14.应用和改进 AlphaFold 参加 CASP14。
Proteins. 2021 Dec;89(12):1711-1721. doi: 10.1002/prot.26257.
5
High-accuracy protein structure prediction in CASP14.在 CASP14 中进行高精度蛋白质结构预测。
Proteins. 2021 Dec;89(12):1687-1699. doi: 10.1002/prot.26171. Epub 2021 Jul 14.
6
Assessment of template-based modeling of protein structure in CASP11.CASP11中基于模板的蛋白质结构建模评估。
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):200-20. doi: 10.1002/prot.25049. Epub 2016 Jun 15.
9
Assessment of the CASP14 assembly predictions.CASP14 组装预测评估。
Proteins. 2021 Dec;89(12):1787-1799. doi: 10.1002/prot.26199. Epub 2021 Aug 31.

引用本文的文献

1
Assessment of nucleic acid structure prediction in CASP16.CASP16中核酸结构预测的评估
bioRxiv. 2025 May 10:2025.05.06.652459. doi: 10.1101/2025.05.06.652459.
3
The ubiquitin E3 ligase BFAR promotes degradation of PNPLA3.泛素 E3 连接酶 BFAR 促进 PNPLA3 的降解。
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2312291121. doi: 10.1073/pnas.2312291121. Epub 2024 Jan 31.
4
Insights into virulence: structure classification of the RIMD mobilome.洞悉毒力:RIMD 可移动组学的结构分类。
mSystems. 2023 Dec 21;8(6):e0079623. doi: 10.1128/msystems.00796-23. Epub 2023 Nov 28.
5
Assessment of three-dimensional RNA structure prediction in CASP15.评估在 CASP15 中三维 RNA 结构预测。
Proteins. 2023 Dec;91(12):1747-1770. doi: 10.1002/prot.26602. Epub 2023 Oct 24.
6
Tertiary structure assessment at CASP15.三级结构评估在 CASP15。
Proteins. 2023 Dec;91(12):1616-1635. doi: 10.1002/prot.26593. Epub 2023 Sep 25.
9
Classification of domains in predicted structures of the human proteome.人类蛋白质组预测结构中的结构域分类。
Proc Natl Acad Sci U S A. 2023 Mar 21;120(12):e2214069120. doi: 10.1073/pnas.2214069120. Epub 2023 Mar 14.

本文引用的文献

6
CASP11 statistics and the prediction center evaluation system.半胱天冬酶11统计数据及预测中心评估系统
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):15-9. doi: 10.1002/prot.25005. Epub 2016 Mar 9.
9
ECOD: an evolutionary classification of protein domains.ECOD:蛋白质结构域的进化分类
PLoS Comput Biol. 2014 Dec 4;10(12):e1003926. doi: 10.1371/journal.pcbi.1003926. eCollection 2014 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验