Suppr超能文献

光学相干断层扫描血管造影深度学习模型的比较研究

Comparative study of deep learning models for optical coherence tomography angiography.

作者信息

Jiang Zhe, Huang Zhiyu, Qiu Bin, Meng Xiangxi, You Yunfei, Liu Xi, Liu Gangjun, Zhou Chuangqing, Yang Kun, Maier Andreas, Ren Qiushi, Lu Yanye

机构信息

Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yihe Yuan Road, Haidian District, Beijing 100871, China.

Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, No. 2199 Lishui Road, Nanshan District, Shenzhen 518055, China.

出版信息

Biomed Opt Express. 2020 Feb 26;11(3):1580-1597. doi: 10.1364/BOE.387807. eCollection 2020 Mar 1.

Abstract

Optical coherence tomography angiography (OCTA) is a promising imaging modality for microvasculature studies. Meanwhile, deep learning has achieved rapid development in image-to-image translation tasks. Some studies have proposed applying deep learning models to OCTA reconstruction and have obtained preliminary results. However, current studies are mostly limited to a few specific deep neural networks. In this paper, we conducted a comparative study to investigate OCTA reconstruction using deep learning models. Four representative network architectures including single-path models, U-shaped models, generative adversarial network (GAN)-based models and multi-path models were investigated on a dataset of OCTA images acquired from rat brains. Three potential solutions were also investigated to study the feasibility of improving performance. The results showed that U-shaped models and multi-path models are two suitable architectures for OCTA reconstruction. Furthermore, merging phase information should be the potential improving direction in further research.

摘要

光学相干断层扫描血管造影术(OCTA)是一种用于微血管研究的很有前景的成像方式。与此同时,深度学习在图像到图像的翻译任务中取得了快速发展。一些研究提出将深度学习模型应用于OCTA重建,并取得了初步成果。然而,目前的研究大多局限于少数特定的深度神经网络。在本文中,我们进行了一项比较研究,以研究使用深度学习模型进行OCTA重建。在从大鼠大脑获取的OCTA图像数据集上,研究了四种代表性的网络架构,包括单路径模型、U形模型、基于生成对抗网络(GAN)的模型和多路径模型。还研究了三种潜在的解决方案,以研究提高性能的可行性。结果表明,U形模型和多路径模型是两种适用于OCTA重建的架构。此外,合并相位信息应该是进一步研究中潜在的改进方向。

相似文献

1
Comparative study of deep learning models for optical coherence tomography angiography.
Biomed Opt Express. 2020 Feb 26;11(3):1580-1597. doi: 10.1364/BOE.387807. eCollection 2020 Mar 1.
2
Rethinking the neighborhood information for deep learning-based optical coherence tomography angiography.
Med Phys. 2022 Jun;49(6):3705-3716. doi: 10.1002/mp.15618. Epub 2022 Mar 28.
4
Weakly Supervised Deep Learning-Based Optical Coherence Tomography Angiography.
IEEE Trans Med Imaging. 2021 Feb;40(2):688-698. doi: 10.1109/TMI.2020.3035154. Epub 2021 Feb 2.
6
Deep-learning-based motion correction in optical coherence tomography angiography.
J Biophotonics. 2021 Dec;14(12):e202100097. doi: 10.1002/jbio.202100097. Epub 2021 Aug 3.
7
Deep-learning visualization enhancement method for optical coherence tomography angiography in dermatology.
J Biophotonics. 2023 Oct;16(10):e202200366. doi: 10.1002/jbio.202200366. Epub 2023 Jul 15.
8
A deep learning based pipeline for optical coherence tomography angiography.
J Biophotonics. 2019 Oct;12(10):e201900008. doi: 10.1002/jbio.201900008. Epub 2019 Jul 1.
9
Improving cerebral microvascular image quality of optical coherence tomography angiography with deep learning-based segmentation.
J Biophotonics. 2021 Nov;14(11):e202100171. doi: 10.1002/jbio.202100171. Epub 2021 Aug 18.
10
A two-stage framework for optical coherence tomography angiography image quality improvement.
Front Med (Lausanne). 2023 Jan 23;10:1061357. doi: 10.3389/fmed.2023.1061357. eCollection 2023.

引用本文的文献

3
Enhanced microvascular imaging through deep learning-driven OCTA reconstruction with squeeze-and-excitation block integration.
Biomed Opt Express. 2024 Sep 3;15(10):5592-5608. doi: 10.1364/BOE.525928. eCollection 2024 Oct 1.
6
Neural-network based high-speed volumetric dynamic optical coherence tomography.
Biomed Opt Express. 2024 Apr 19;15(5):3216-3239. doi: 10.1364/BOE.519964. eCollection 2024 May 1.
7
Megahertz multi-parametric ophthalmic OCT system for whole eye imaging.
Biomed Opt Express. 2024 Apr 11;15(5):3000-3017. doi: 10.1364/BOE.517757. eCollection 2024 May 1.
8
U-shaped fusion convolutional transformer based workflow for fast optical coherence tomography angiography generation in lips.
Biomed Opt Express. 2023 Oct 5;14(11):5583-5601. doi: 10.1364/BOE.502085. eCollection 2023 Nov 1.
9
Feasibility of deep learning-based polarization-sensitive optical coherence tomography angiography for imaging cutaneous microvasculature.
Biomed Opt Express. 2023 Jul 5;14(8):3856-3870. doi: 10.1364/BOE.488822. eCollection 2023 Aug 1.
10
Fast optical coherence tomography angiography image acquisition and reconstruction pipeline for skin application.
Biomed Opt Express. 2023 Jul 6;14(8):3899-3913. doi: 10.1364/BOE.486933. eCollection 2023 Aug 1.

本文引用的文献

1
Noise reduction in optical coherence tomography images using a deep neural network with perceptually-sensitive loss function.
Biomed Opt Express. 2020 Jan 14;11(2):817-830. doi: 10.1364/BOE.379551. eCollection 2020 Feb 1.
2
A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head.
Sci Rep. 2019 Oct 8;9(1):14454. doi: 10.1038/s41598-019-51062-7.
3
A deep learning based pipeline for optical coherence tomography angiography.
J Biophotonics. 2019 Oct;12(10):e201900008. doi: 10.1002/jbio.201900008. Epub 2019 Jul 1.
4
Retinal image synthesis from multiple-landmarks input with generative adversarial networks.
Biomed Eng Online. 2019 May 21;18(1):62. doi: 10.1186/s12938-019-0682-x.
6
A gentle introduction to deep learning in medical image processing.
Z Med Phys. 2019 May;29(2):86-101. doi: 10.1016/j.zemedi.2018.12.003. Epub 2019 Jan 25.
7
A learning-based material decomposition pipeline for multi-energy x-ray imaging.
Med Phys. 2019 Feb;46(2):689-703. doi: 10.1002/mp.13317. Epub 2018 Dec 24.
8
A super-resolution method-based pipeline for fundus fluorescein angiography imaging.
Biomed Eng Online. 2018 Sep 19;17(1):125. doi: 10.1186/s12938-018-0556-7.
9
Sharpness-Aware Low-Dose CT Denoising Using Conditional Generative Adversarial Network.
J Digit Imaging. 2018 Oct;31(5):655-669. doi: 10.1007/s10278-018-0056-0.
10
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising.
IEEE Trans Image Process. 2017 Jul;26(7):3142-3155. doi: 10.1109/TIP.2017.2662206. Epub 2017 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验