Suppr超能文献

分散的钌纳米粒子上 CO 和 CO 加氢的机理联系。

Mechanistic Connections between CO and CO Hydrogenation on Dispersed Ruthenium Nanoparticles.

机构信息

Department of Chemical Engineering, University of California at Berkeley, Berkeley, California 94720, United States.

出版信息

J Am Chem Soc. 2021 Aug 4;143(30):11582-11594. doi: 10.1021/jacs.1c04298. Epub 2021 Jul 21.

Abstract

Catalytic routes for upgrading CO to CO and hydrocarbons have been studied for decades, and yet the mechanistic details and structure-function relationships that control catalytic performance have remained unresolved. This study elucidates the elementary steps that mediate these reactions and examines them within the context of the established mechanism for CO hydrogenation to resolve the persistent discrepancies and to demonstrate inextricable links between CO and CO hydrogenation on dispersed Ru nanoparticles (6-12 nm mean diameter, 573 K). The formation of CH from both CO-H and CO-H reactants requires the cleavage of strong C≡O bonds in chemisorbed CO, formed as an intermediate in both reactions, via hydrogen-assisted activation pathways. The C═O bonds in CO are cleaved via direct interactions with exposed Ru atoms in elementary steps that are shown to be facile by fast isotopic scrambling of CO-CO-H mixtures. Such CO activation steps form bound CO molecules and O atoms; the latter are removed via H-addition steps to form HO. The kinetic hurdles in forming CH from CO do not reflect the inertness of C═O bonds in CO but instead reflect the intermediate formation of CO molecules, which contain stronger C≡O bonds than CO and are present at near-saturation coverages during CO and CO hydrogenation catalysis. The conclusions presented herein are informed by a combination of spectroscopic, isotopic, and kinetic measurements coupled with the use of analysis methods that account for strong rate inhibition by chemisorbed CO. Such methods enable the assessment of intrinsic reaction rates and are essential to accurately determine the effects of nanoparticle structure and composition on reactivity and selectivity for CO-H reactions.

摘要

几十年来,人们一直在研究将 CO 升级为 CO 和碳氢化合物的催化途径,但控制催化性能的机制细节和结构-功能关系仍未得到解决。本研究阐明了介导这些反应的基本步骤,并在 CO 加氢反应的既定机制范围内对其进行了考察,以解决持续存在的差异,并证明在分散的 Ru 纳米颗粒(平均直径为 6-12nm,573K)上 CO 和 CO 加氢之间存在不可分割的联系。从 CO-H 和 CO-H 反应物生成 CH 需要通过强 C≡O 键的断裂来介导,这些 C≡O 键在两种反应中均作为中间体形成,通过氢辅助的活化途径。CO 中的 C═O 键通过与暴露的 Ru 原子的直接相互作用断裂,通过 CO-CO-H 混合物的快速同位素混合证明这些步骤是容易发生的。这些 CO 活化步骤形成结合的 CO 分子和 O 原子;通过 H 添加步骤去除后者以形成 HO。从 CO 形成 CH 的动力学障碍并不反映 CO 中 C═O 键的惰性,而是反映了 CO 分子的中间形成,这些分子含有比 CO 更强的 C≡O 键,并且在 CO 和 CO 加氢催化过程中接近饱和覆盖。本文的结论是通过结合光谱、同位素和动力学测量以及使用考虑到化学吸附 CO 的强速率抑制的分析方法得出的。这些方法能够评估本征反应速率,对于准确确定纳米颗粒结构和组成对 CO-H 反应的反应性和选择性的影响至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验