Suppr超能文献

使用原代肝细胞的高内涵成像技术估算肝毒性剂量。

Estimating Hepatotoxic Doses Using High-Content Imaging in Primary Hepatocytes.

机构信息

Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.

Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee 37830, USA.

出版信息

Toxicol Sci. 2021 Sep 28;183(2):285-301. doi: 10.1093/toxsci/kfab091.

Abstract

Using in vitro data to estimate point of departure (POD) values is an essential component of new approach methodologies (NAMs)-based chemical risk assessments. In this case study, we evaluated a NAM for hepatotoxicity based on rat primary hepatocytes, high-content imaging (HCI), and toxicokinetic modeling. First, we treated rat primary hepatocytes with 10 concentrations (0.2-100 µM) of 51 chemicals that produced hepatotoxicity in repeat-dose subchronic and chronic exposures. Second, we used HCI to measure endoplasmic reticulum stress, mitochondrial function, lysosomal mass, steatosis, apoptosis, DNA texture, nuclear size, and cell number at 24, 48, and 72 h and calculated concentrations at 50% maximal activity (AC50). Third, we estimated administered equivalent doses (AEDs) from AC50 values using toxicokinetic modeling. AEDs using physiologically based toxicokinetic models were 4.1-fold (SD 6.3) and 8.1-fold (SD 15.5) lower than subchronic and chronic lowest observed adverse effect levels (LOAELs), respectively. In contrast, AEDs from ToxCast and Tox21 assays were 89.8-fold (SD 149.5) and 168-fold (SD 323.7) lower than subchronic and chronic LOAELs. Individual HCI endpoints also estimated AEDs for specific hepatic lesions that were lower than in vivo PODs. Lastly, AEDs were similar for different in vitro exposure durations, but steady-state toxicokinetic models produced 7.6-fold lower estimates than dynamic physiologically based ones. Our findings suggest that NAMs from diverse cell types provide conservative estimates of PODs. In contrast, NAMs based on the same species and cell type as the adverse outcome may produce estimates closer to the traditional in vivo PODs.

摘要

利用体外数据估算基准剂量(POD)值是基于新方法学(NAM)的化学风险评估的一个重要组成部分。在本案例研究中,我们评估了一种基于大鼠原代肝细胞、高内涵成像(HCI)和毒代动力学建模的肝毒性 NAM。首先,我们用 51 种化学物质处理大鼠原代肝细胞,这些化学物质在重复剂量亚慢性和慢性暴露中产生肝毒性,浓度范围为 0.2-100 μM。其次,我们使用 HCI 测量内质网应激、线粒体功能、溶酶体质量、脂肪变性、凋亡、DNA 纹理、核大小和细胞数量,时间点为 24、48 和 72 小时,并计算半数最大活性(AC50)时的浓度。第三,我们使用毒代动力学模型从 AC50 值估算给药等效剂量(AED)。基于生理毒代动力学模型的 AED 分别比亚慢性和慢性最低观察到的不良效应水平(LOAEL)低 4.1 倍(SD 6.3)和 8.1 倍(SD 15.5)。相比之下,来自 ToxCast 和 Tox21 测定的 AED 分别比亚慢性和慢性 LOAEL 低 89.8 倍(SD 149.5)和 168 倍(SD 323.7)。单个 HCI 终点还估计了特定肝损伤的 AED,低于体内 POD。最后,不同的体外暴露时间的 AED 相似,但稳态毒代动力学模型产生的估计值比动态生理毒代动力学模型低 7.6 倍。我们的研究结果表明,来自不同细胞类型的 NAM 提供了 POD 的保守估计值。相比之下,基于与不良结局相同物种和细胞类型的 NAM 可能会产生更接近传统体内 POD 的估计值。

相似文献

1
Estimating Hepatotoxic Doses Using High-Content Imaging in Primary Hepatocytes.
Toxicol Sci. 2021 Sep 28;183(2):285-301. doi: 10.1093/toxsci/kfab091.
4
A geospatial modeling approach to quantifying the risk of exposure to environmental chemical mixtures via a common molecular target.
Sci Total Environ. 2023 Jan 10;855:158905. doi: 10.1016/j.scitotenv.2022.158905. Epub 2022 Sep 21.
6
Dietary glycation compounds - implications for human health.
Crit Rev Toxicol. 2024 Sep;54(8):485-617. doi: 10.1080/10408444.2024.2362985. Epub 2024 Aug 16.
9
Use of computational toxicology models to predict toxicological points of departure: A case study with triazine herbicides.
Birth Defects Res. 2023 Mar 15;115(5):525-544. doi: 10.1002/bdr2.2144. Epub 2022 Dec 30.
10
Impact of High-Throughput Model Parameterization and Data Uncertainty on Thyroid-Based Toxicological Estimates for Pesticide Chemicals.
Environ Sci Technol. 2022 May 3;56(9):5620-5631. doi: 10.1021/acs.est.1c07143. Epub 2022 Apr 21.

引用本文的文献

2
Incorporating new approach methods (NAMs) data in dose-response assessments: The future is now!
J Toxicol Environ Health B Crit Rev. 2025 Jan 2;28(1):28-62. doi: 10.1080/10937404.2024.2412571. Epub 2024 Oct 10.
3
Searching for LINCS to Stress: Using Text Mining to Automate Reference Chemical Curation.
Chem Res Toxicol. 2024 Jun 17;37(6):878-893. doi: 10.1021/acs.chemrestox.3c00335. Epub 2024 May 13.
4
A novel method to derive a human safety limit for PFOA by gene expression profiling and modelling.
Front Toxicol. 2024 Mar 21;6:1368320. doi: 10.3389/ftox.2024.1368320. eCollection 2024.
6
Assessment of Drug-Induced Liver Injury through Cell Morphology and Gene Expression Analysis.
Chem Res Toxicol. 2023 Sep 18;36(9):1456-1470. doi: 10.1021/acs.chemrestox.2c00381. Epub 2023 Aug 31.

本文引用的文献

1
Variability in studies: Defining the upper limit of performance for predictions of systemic effect levels.
Comput Toxicol. 2020 Aug 1;15(August 2020):1-100126. doi: 10.1016/j.comtox.2020.100126.
2
Array programming with NumPy.
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.
8
ToxRefDB version 2.0: Improved utility for predictive and retrospective toxicology analyses.
Reprod Toxicol. 2019 Oct;89:145-158. doi: 10.1016/j.reprotox.2019.07.012. Epub 2019 Jul 21.
9
Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations.
Arch Toxicol. 2019 Jun;93(6):1609-1637. doi: 10.1007/s00204-019-02492-9. Epub 2019 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验