Ly Pham Ly, Watford Sean, Pradeep Prachi, Martin Matthew T, Thomas Russell, Judson Richard, Setzer R Woodrow, Paul Friedman Katie
Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711, USA.
Oak Ridge Institute for Science and Education, 100 ORAU Way, Oak Ridge, TN 37830.
Comput Toxicol. 2020 Aug 1;15(August 2020):1-100126. doi: 10.1016/j.comtox.2020.100126.
New approach methodologies (NAMs) for chemical hazard assessment are often evaluated via comparison to animal studies; however, variability in animal study data limits NAM accuracy. The US EPA Toxicity Reference Database (ToxRefDB) enables consideration of variability in effect levels, including the lowest effect level (LEL) for a treatment-related effect and the lowest observable adverse effect level (LOAEL) defined by expert review, from subacute, subchronic, chronic, multi-generation reproductive, and developmental toxicity studies. The objectives of this work were to quantify the variance within systemic LEL and LOAEL values, defined as potency values for effects in adult or parental animals only, and to estimate the upper limit of NAM prediction accuracy. Multiple linear regression (MLR) and augmented cell means (ACM) models were used to quantify the total variance, and the fraction of variance in systemic LEL and LOAEL values explained by available study descriptors (e.g., administration route, study type). The MLR approach considered each study descriptor as an independent contributor to variance, whereas the ACM approach combined categorical descriptors into cells to define replicates. Using these approaches, total variance in systemic LEL and LOAEL values (in log-mg/kg/day units) ranged from 0.74 to 0.92. Unexplained variance in LEL and LOAEL values, approximated by the residual mean square error (MSE), ranged from 0.20-0.39. Considering subchronic, chronic, or developmental study designs separately resulted in similar values. Based on the relationship between MSE and R-squared for goodness-of-fit, the maximal R-squared may approach 55 to 73% for a NAM-based predictive model of systemic toxicity using these data as reference. The root mean square error (RMSE) ranged from 0.47 to 0.63 log-mg/kg/day, depending on dataset and regression approach, suggesting that a two-sided minimum prediction interval for systemic effect levels may have a width of 58 to 284-fold. These findings suggest quantitative considerations for building scientific confidence in NAM-based systemic toxicity predictions.
化学危害评估的新方法学(NAMs)通常通过与动物研究进行比较来评估;然而,动物研究数据的变异性限制了NAM的准确性。美国环境保护局毒性参考数据库(ToxRefDB)能够考虑效应水平的变异性,包括与治疗相关效应的最低效应水平(LEL)以及由专家审查定义的最低可观察到的不良反应水平(LOAEL),这些数据来自亚急性、亚慢性、慢性、多代生殖和发育毒性研究。这项工作的目标是量化仅定义为成年或亲代动物效应的效力值的全身LEL和LOAEL值内的方差,并估计NAM预测准确性的上限。使用多元线性回归(MLR)和增强细胞均值(ACM)模型来量化总方差,以及可用研究描述符(如给药途径、研究类型)所解释的全身LEL和LOAEL值方差的比例。MLR方法将每个研究描述符视为方差的独立贡献者,而ACM方法将分类描述符组合到单元格中以定义重复。使用这些方法,全身LEL和LOAEL值(以log-mg/kg/天为单位)的总方差范围为0.74至0.92。由残差均方误差(MSE)近似的LEL和LOAEL值的未解释方差范围为0.20 - 0.39。分别考虑亚慢性、慢性或发育研究设计会得到类似的值。基于拟合优度的MSE与R平方之间的关系,对于使用这些数据作为参考的基于NAM的全身毒性预测模型,最大R平方可能接近55%至73%。根均方误差(RMSE)范围为0.47至0.63 log-mg/kg/天,具体取决于数据集和回归方法,这表明全身效应水平的双侧最小预测区间可能具有58至284倍的宽度。这些发现为基于NAM的全身毒性预测建立科学信心提出了定量考量。