Suppr超能文献

ToxRefDB 版本 2.0:用于预测和回顾性毒理学分析的改进工具。

ToxRefDB version 2.0: Improved utility for predictive and retrospective toxicology analyses.

机构信息

ORAU, Contractor to U.S. Environmental Protection Agency through the National Student Services Contract, United States; National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, United States.

ORAU, Contractor to U.S. Environmental Protection Agency through the National Student Services Contract, United States; ORISE Postdoctoral Research Participant, United States.

出版信息

Reprod Toxicol. 2019 Oct;89:145-158. doi: 10.1016/j.reprotox.2019.07.012. Epub 2019 Jul 21.

Abstract

The Toxicity Reference Database (ToxRefDB) structures information from over 5000 in vivo toxicity studies, conducted largely to guidelines or specifications from the US Environmental Protection Agency and the National Toxicology Program, into a public resource for training and validation of predictive models. Herein, ToxRefDB version 2.0 (ToxRefDBv2) development is described. Endpoints were annotated (e.g. required, not required) according to guidelines for subacute, subchronic, chronic, developmental, and multigenerational reproductive designs, distinguishing negative responses from untested. Quantitative data were extracted, and dose-response modeling for nearly 28,000 datasets from nearly 400 endpoints using Benchmark Dose (BMD) Modeling Software were generated and stored. Implementation of controlled vocabulary improved data quality; standardization to guideline requirements and cross-referencing with United Medical Language System (UMLS) connects ToxRefDBv2 observations to vocabularies linked to UMLS, including PubMed medical subject headings. ToxRefDBv2 allows for increased connections to other resources and has greatly enhanced quantitative and qualitative utility for predictive toxicology.

摘要

毒性参考数据库(ToxRefDB)将 5000 多项体内毒性研究的信息进行了结构化处理,这些研究主要是按照美国环境保护署和国家毒理学计划的指导方针或规范进行的,现已将其构建为一个公共资源,用于培训和验证预测模型。本文介绍了 ToxRefDB 版本 2.0(ToxRefDBv2)的开发情况。根据亚急性、亚慢性、慢性、发育和多代生殖设计的指导方针,对终点进行了注释(例如必需、非必需),将阴性反应与未测试的反应区分开来。使用基准剂量(BMD)建模软件提取了近 28000 个数据集的定量数据,并对近 400 个终点的近 28000 个数据集进行了剂量反应建模,并进行了存储。受控词汇的实现提高了数据质量;根据指导方针的要求进行标准化,并与统一医学语言系统(UMLS)交叉引用,将 ToxRefDBv2 的观察结果与与 UMLS 相关联的词汇联系起来,包括 PubMed 医学主题词。ToxRefDBv2 允许与其他资源进行更多的连接,并极大地提高了预测毒理学的定量和定性效用。

相似文献

4
Quantitative prediction of repeat dose toxicity values using GenRA.利用 GenRA 对重复剂量毒性值进行定量预测。
Regul Toxicol Pharmacol. 2019 Dec;109:104480. doi: 10.1016/j.yrtph.2019.104480. Epub 2019 Sep 21.
8
Challenges in using the ToxRefDB as a resource for toxicity prediction modeling.将ToxRefDB用作毒性预测建模资源时面临的挑战。
Regul Toxicol Pharmacol. 2015 Aug;72(3):610-4. doi: 10.1016/j.yrtph.2015.05.013. Epub 2015 May 21.

引用本文的文献

1
2
Developmental toxicity: artificial intelligence-powered assessments.发育毒性:人工智能驱动的评估
Trends Pharmacol Sci. 2025 Jun;46(6):486-502. doi: 10.1016/j.tips.2025.04.005. Epub 2025 May 15.

本文引用的文献

2
Update: use of the benchmark dose approach in risk assessment.更新:基准剂量法在风险评估中的应用。
EFSA J. 2017 Jan 24;15(1):e04658. doi: 10.2903/j.efsa.2017.4658. eCollection 2017 Jan.
5
Benchmark dose (BMD) modeling: current practice, issues, and challenges.基准剂量(BMD)建模:当前实践、问题与挑战。
Crit Rev Toxicol. 2018 May;48(5):387-415. doi: 10.1080/10408444.2018.1430121. Epub 2018 Mar 8.
10
Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure.利用体外生物活性数据和化学结构预测器官毒性
Chem Res Toxicol. 2017 Nov 20;30(11):2046-2059. doi: 10.1021/acs.chemrestox.7b00084. Epub 2017 Oct 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验