Suppr超能文献

基于双能矢量化的快速有效单扫描双能锥形束 CT 重建和分解去噪。

Fast and effective single-scan dual-energy cone-beam CT reconstruction and decomposition denoising based on dual-energy vectorization.

机构信息

Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, China.

Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

出版信息

Med Phys. 2021 Sep;48(9):4843-4856. doi: 10.1002/mp.15117. Epub 2021 Aug 11.

Abstract

PURPOSE

Flat-panel detector (FPD) based dual-energy cone-beam computed tomography (DE-CBCT) is a promising imaging technique for dedicated clinical applications. In this paper, we proposed a fully analytical method for fast and effective single-scan DE-CBCT image reconstruction and decomposition.

METHODS

A rotatable Mo filter was inserted between an x-ray source and imaged object to alternately produce low and high-energy x-ray spectra. First, filtered-backprojection (FBP) method was applied on down-sampled projections to reconstruct low and high-energy images. Then, the two images were converted into a vectorized form represented with an amplitude and an argument image. Using amplitude image as a guide, a joint bilateral filter was applied to denoise the argument image. Then, high-quality dual-energy images were recovered from the amplitude image and the denoised argument image. Finally, the recovered dual-energy images were further used for low-noise material decomposition and electron density synthesis. Imaging was conducted on a Catphan 600 phantom and an anthropomorphic head phantom. The proposed method was evaluated via comparison with the traditional two-scan method and a commonly used filtering method (HYPR-LR).

RESULTS

On the Catphan 600 phantom, the proposed method successfully reduced streaking artifacts and preserved spatial resolution and noise-power-spectrum (NPS) pattern. In the electron density image, the proposed method increased contrast-to-noise ratio (CNR) by more than 2.5 times and achieved <1.2% error for electron density values. On the anthropomorphic head phantom, the proposed method greatly improved the soft-tissue contrast and the fine detail differentiation ability. In the selected ROIs on different human tissues, the differences between the CT number obtained by the proposed method and that by the two-scan method were less than 4 HU. In the material images, the proposed method suppressed noise by over 75.5% compared with two-scan results, and by over 40.4% compared with HYPR-LR results. Implementation of the whole algorithm took 44.5 s for volumetric imaging, including projection preprocessing, FBP reconstruction, joint bilateral filtering, and material decomposition.

CONCLUSIONS

Using down-sampled projections in single-scan DE-CBCT, the proposed method could effectively and efficiently produce high-quality DE-CBCT images and low-noise material decomposition images. This method demonstrated superior performance on spatial resolution enhancement, NPS preservation, noise reduction, and electron density accuracy, indicating better prospect in material differentiation and dose calculation.

摘要

目的

基于平板探测器(FPD)的双能锥形束 CT(DE-CBCT)是一种有前途的专用临床应用成像技术。在本文中,我们提出了一种用于快速有效单扫描 DE-CBCT 图像重建和分解的全分析方法。

方法

在 X 射线源和成像物体之间插入可旋转的 Mo 滤波器,以交替产生低能和高能 X 射线光谱。首先,在降采样投影上应用滤波反投影(FBP)方法来重建低能和高能图像。然后,将这两个图像转换为一个矢量化形式,用一个幅度图像和一个参数图像表示。使用幅度图像作为指导,应用联合双边滤波器对参数图像进行去噪。然后,从幅度图像和去噪的参数图像中恢复高质量的双能图像。最后,从恢复的双能图像进一步进行低噪声材料分解和电子密度合成。在 Catphan 600 体模和人体头部体模上进行了成像。通过与传统的双扫描方法和常用的滤波方法(HYPR-LR)进行比较,评估了所提出的方法。

结果

在 Catphan 600 体模上,该方法成功减少了条纹伪影,并保留了空间分辨率和噪声功率谱(NPS)模式。在电子密度图像中,该方法使对比噪声比(CNR)提高了 2.5 倍以上,并且电子密度值的误差小于 1.2%。在人体头部体模上,该方法大大提高了软组织对比度和精细细节分辨能力。在不同人体组织的选定 ROI 中,所提出的方法获得的 CT 值与双扫描方法获得的 CT 值之间的差异小于 4 HU。在材料图像中,与双扫描结果相比,该方法抑制了超过 75.5%的噪声,与 HYPR-LR 结果相比,抑制了超过 40.4%的噪声。整个算法的实现包括投影预处理、FBP 重建、联合双边滤波和材料分解,对于体积成像,需要 44.5 s。

结论

在单扫描 DE-CBCT 中使用降采样投影,所提出的方法可以有效地、高效地生成高质量的 DE-CBCT 图像和低噪声的材料分解图像。该方法在空间分辨率增强、NPS 保持、噪声降低和电子密度精度方面表现出优异的性能,表明在材料分化和剂量计算方面具有更好的前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验