Suppr超能文献

数据准备就绪的概念框架:质量、可用性、互操作性和出处的上下文交叉点。

A Conceptual Framework of Data Readiness: The Contextual Intersection of Quality, Availability, Interoperability, and Provenance.

机构信息

School of Nursing, Duke University, Durham, North Carolina, United States.

Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States.

出版信息

Appl Clin Inform. 2021 May;12(3):675-685. doi: 10.1055/s-0041-1732423. Epub 2021 Jul 21.

Abstract

BACKGROUND

Data readiness is a concept often used when referring to health information technology applications in the informatics disciplines, but it is not clearly defined in the literature. To avoid misinterpretations in research and implementation, a formal definition should be developed.

OBJECTIVES

The objective of this research is to provide a conceptual definition and framework for the term data readiness that can be used to guide research and development related to data-based applications in health care.

METHODS

PubMed, the National Institutes of Health RePORTER, Scopus, the Cochrane Library, and Duke University Library databases for business and information sciences were queried for formal mentions of the term "data readiness." Manuscripts found in the search were reviewed, and relevant information was extracted, evaluated, and assimilated into a framework for data readiness.

RESULTS

Of the 264 manuscripts found in the database searches, 20 were included in the final synthesis to define data readiness. In these 20 manuscripts, the term data readiness was revealed to encompass the constructs of data quality, data availability, interoperability, and data provenance.

DISCUSSION

Based upon our review of the literature, we define data readiness as the application-specific intersection of data quality, data availability, interoperability, and data provenance. While these concepts are not new, the combination of these factors in a novel data readiness model may help guide future informatics research and implementation science.

CONCLUSION

This analysis provides a definition to guide research and development related to data-based applications in health care. Future work should be done to validate this definition, and to apply the components of data readiness to real-world applications so that specific metrics may be developed and disseminated.

摘要

背景

在信息学领域中,数据准备通常用于指代健康信息技术应用,但在文献中并未明确定义。为避免在研究和实施过程中产生误解,应制定正式定义。

目的

本研究旨在为数据准备这一术语提供概念定义和框架,以指导与医疗保健中基于数据的应用相关的研究和开发。

方法

在 PubMed、美国国立卫生研究院报告系统、Scopus、考科兰图书馆和杜克大学图书馆的商业和信息科学数据库中,对正式提及“数据准备”一词的文献进行检索。对搜索中找到的文献进行了回顾,提取了相关信息,并对其进行了评估,将其纳入数据准备框架中。

结果

在数据库检索中找到的 264 篇文献中,有 20 篇被纳入最终综合分析,以定义数据准备。在这 20 篇文献中,数据准备一词被揭示为包含数据质量、数据可用性、互操作性和数据来源等结构。

讨论

基于我们对文献的回顾,我们将数据准备定义为特定于应用的数据质量、数据可用性、互操作性和数据来源的交集。虽然这些概念并不新鲜,但将这些因素结合到一个新颖的数据准备模型中可能有助于指导未来的信息学研究和实施科学。

结论

本分析为指导与医疗保健中基于数据的应用相关的研究和开发提供了定义。未来应开展工作验证该定义,并将数据准备的各个组成部分应用于实际应用,以便制定和传播特定的度量标准。

相似文献

1
A Conceptual Framework of Data Readiness: The Contextual Intersection of Quality, Availability, Interoperability, and Provenance.
Appl Clin Inform. 2021 May;12(3):675-685. doi: 10.1055/s-0041-1732423. Epub 2021 Jul 21.
2
Adaptation of the technology readiness levels for impact assessment in implementation sciences: The TRL-IS checklist.
Heliyon. 2024 Apr 26;10(9):e29930. doi: 10.1016/j.heliyon.2024.e29930. eCollection 2024 May 15.
4
A framework for eHealth readiness of dietitians.
Int J Med Inform. 2018 Jul;115:43-52. doi: 10.1016/j.ijmedinf.2018.04.002. Epub 2018 Apr 13.
7
What is eHealth (4): a scoping exercise to map the field.
J Med Internet Res. 2005 Mar 31;7(1):e9. doi: 10.2196/jmir.7.1.e9.
8
A unified framework for managing provenance information in translational research.
BMC Bioinformatics. 2011 Nov 29;12:461. doi: 10.1186/1471-2105-12-461.
9
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

本文引用的文献

3
Measuring implementation feasibility of clinical decision support alerts for clinical practice recommendations.
J Am Med Inform Assoc. 2020 Apr 1;27(4):514-521. doi: 10.1093/jamia/ocz225.
5
Data, Big and Small: Emerging Challenges to Medical Education Scholarship.
Acad Med. 2019 Jan;94(1):31-36. doi: 10.1097/ACM.0000000000002465.
6
A Data Quality Assessment Guideline for Electronic Health Record Data Reuse.
EGEMS (Wash DC). 2017 Sep 4;5(1):14. doi: 10.5334/egems.218.
7
Big Data Provenance: Challenges, State of the Art and Opportunities.
Proc IEEE Int Conf Big Data. 2015 Oct-Nov;2015:2509-2516. doi: 10.1109/BigData.2015.7364047. Epub 2015 Dec 28.
9
The FAIR Guiding Principles for scientific data management and stewardship.
Sci Data. 2016 Mar 15;3:160018. doi: 10.1038/sdata.2016.18.
10
Guidance for conducting systematic scoping reviews.
Int J Evid Based Healthc. 2015 Sep;13(3):141-6. doi: 10.1097/XEB.0000000000000050.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验