Suppr超能文献

DeepCUBIT:使用深度立方体结节迁移学习算法在胸部CT扫描上预测临床T1期非小细胞肺癌的淋巴管侵犯或病理淋巴结受累情况

DeepCUBIT: Predicting Lymphovascular Invasion or Pathological Lymph Node Involvement of Clinical T1 Stage Non-Small Cell Lung Cancer on Chest CT Scan Using Deep Cubical Nodule Transfer Learning Algorithm.

作者信息

Beck Kyongmin Sarah, Gil Bomi, Na Sae Jung, Hong Ji Hyung, Chun Sang Hoon, An Ho Jung, Kim Jae Jun, Hong Soon Auck, Lee Bora, Shim Won Sang, Park Sungsoo, Ko Yoon Ho

机构信息

Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.

Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.

出版信息

Front Oncol. 2021 Jul 5;11:661244. doi: 10.3389/fonc.2021.661244. eCollection 2021.

Abstract

The prediction of lymphovascular invasion (LVI) or pathological nodal involvement of tumor cells is critical for successful treatment in early stage non-small cell lung cancer (NSCLC). We developed and validated a Deep Cubical Nodule Transfer Learning Algorithm (DeepCUBIT) using transfer learning and 3D Convolutional Neural Network (CNN) to predict LVI or pathological nodal involvement on chest CT images. A total of 695 preoperative CT images of resected NSCLC with tumor size of less than or equal to 3 cm from 2008 to 2015 were used to train and validate the DeepCUBIT model using five-fold cross-validation method. We also used tumor size and consolidation to tumor ratio (C/T ratio) to build a support vector machine (SVM) classifier. Two-hundred and fifty-four out of 695 samples (36.5%) had LVI or nodal involvement. An integrated model (3D CNN + Tumor size + C/T ratio) showed sensitivity of 31.8%, specificity of 89.8%, accuracy of 76.4%, and AUC of 0.759 on external validation cohort. Three single SVM models, using 3D CNN (DeepCUBIT), tumor size or C/T ratio, showed AUCs of 0.717, 0.630 and 0.683, respectively on external validation cohort. DeepCUBIT showed the best single model compared to the models using only C/T ratio or tumor size. In addition, the DeepCUBIT model could significantly identify the prognosis of resected NSCLC patients even in stage I. DeepCUBIT using transfer learning and 3D CNN can accurately predict LVI or nodal involvement in cT1 size NSCLC on CT images. Thus, it can provide a more accurate selection of candidates who will benefit from limited surgery without increasing the risk of recurrence.

摘要

预测肿瘤细胞的淋巴管侵犯(LVI)或病理淋巴结受累对于早期非小细胞肺癌(NSCLC)的成功治疗至关重要。我们开发并验证了一种深度立方体结节迁移学习算法(DeepCUBIT),该算法利用迁移学习和三维卷积神经网络(3D CNN)来预测胸部CT图像上的LVI或病理淋巴结受累情况。我们使用2008年至2015年共695例肿瘤大小小于或等于3 cm的切除NSCLC术前CT图像,采用五折交叉验证方法训练和验证DeepCUBIT模型。我们还使用肿瘤大小和实变与肿瘤比值(C/T比值)构建支持向量机(SVM)分类器。695个样本中有254个(36.5%)存在LVI或淋巴结受累。在外部验证队列中,一个整合模型(3D CNN + 肿瘤大小 + C/T比值)显示出31.8%的敏感性、89.8%的特异性、76.4%的准确性和0.759的曲线下面积(AUC)。三个单独的SVM模型,分别使用3D CNN(DeepCUBIT)、肿瘤大小或C/T比值,在外部验证队列中的AUC分别为0.717、0.630和0.683。与仅使用C/T比值或肿瘤大小的模型相比,DeepCUBIT显示出最佳的单一模型。此外,即使在I期,DeepCUBIT模型也能显著识别切除的NSCLC患者的预后。利用迁移学习和3D CNN的DeepCUBIT能够准确预测CT图像上cT1大小NSCLC的LVI或淋巴结受累情况。因此,它可以在不增加复发风险的情况下,为将从有限手术中获益的患者提供更准确的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5c5/8287408/1344f80d501f/fonc-11-661244-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验