Timmermann Sonja, Starostin Vladimir, Girelli Anita, Ragulskaya Anastasia, Rahmann Hendrik, Reiser Mario, Begam Nafisa, Randolph Lisa, Sprung Michael, Westermeier Fabian, Zhang Fajun, Schreiber Frank, Gutt Christian
Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany.
Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
J Appl Crystallogr. 2022 Jun 15;55(Pt 4):751-757. doi: 10.1107/S1600576722004435. eCollection 2022 Aug 1.
Machine learning methods are used for an automated classification of experimental two-time X-ray photon correlation maps from an arrested liquid-liquid phase separation of a protein solution. The correlation maps are matched with correlation maps generated with Cahn-Hilliard-type simulations of liquid-liquid phase separations according to two simulation parameters and in the last step interpreted in the framework of the simulation. The matching routine employs an auto-encoder network and a differential evolution based algorithm. The method presented here is a first step towards handling large amounts of dynamic data measured at high-brilliance synchrotron and X-ray free-electron laser sources, facilitating fast comparison with phase field models of phase separation.
机器学习方法用于对蛋白质溶液的静态液-液相分离实验中的二次X射线光子相关图进行自动分类。根据两个模拟参数,将相关图与通过液-液相分离的Cahn-Hilliard型模拟生成的相关图进行匹配,并在最后一步在模拟框架内进行解释。匹配程序采用自动编码器网络和基于差分进化的算法。本文提出的方法是朝着处理在高亮度同步加速器和X射线自由电子激光源处测量的大量动态数据迈出的第一步,有助于与相分离的相场模型进行快速比较。