Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany.
Phys Rev Lett. 2021 Apr 2;126(13):138004. doi: 10.1103/PhysRevLett.126.138004.
While the interplay between liquid-liquid phase separation (LLPS) and glass formation in biological systems is highly relevant for their structure formation and thus function, the exact underlying mechanisms are not well known. The kinetic arrest originates from the slowdown at the molecular level, but how this propagates to the dynamics of microscopic phase domains is not clear. Since with diffusion, viscoelasticity, and hydrodynamics, distinctly different mechanisms are at play, the dynamics needs to be monitored on the relevant time and length scales and compared to theories of phase separation. Using x-ray photon correlation spectroscopy, we determine the LLPS dynamics of a model protein solution upon low temperature quenches and find distinctly different dynamical regimes. We observe that the early stage LLPS is driven by the curvature of the free energy and speeds up upon increasing quench depth. In contrast, the late stage dynamics slows down with increasing quench depth, fingerprinting a nearby glass transition. The dynamics observed shows a ballistic type of motion, implying that viscoelasticity plays an important role during LLPS. We explore possible explanations based on the Cahn-Hilliard theory with nontrivial mobility parameters and find that these can only partially explain our findings.
虽然液-液相分离 (LLPS) 和玻璃化形成在生物系统中的相互作用对它们的结构形成从而对功能具有重要意义,但确切的潜在机制尚不清楚。动力学阻滞源于分子水平的减速,但这种减速如何传播到微观相畴的动力学尚不清楚。由于扩散、粘弹性和流体动力学涉及明显不同的机制,因此需要在相关的时间和长度尺度上监测动力学,并将其与相分离理论进行比较。使用 X 射线光子相关光谱法,我们确定了模型蛋白质溶液在低温淬火时的 LLPS 动力学,并发现了明显不同的动力学状态。我们观察到早期的 LLPS 是由自由能的曲率驱动的,并随着淬火深度的增加而加速。相比之下,后期动力学随着淬火深度的增加而减慢,这表明附近发生了玻璃化转变。观察到的动力学表现出弹道式运动,这意味着粘弹性在 LLPS 过程中起着重要作用。我们基于具有非平凡迁移率参数的 Cahn-Hilliard 理论探索了可能的解释,但发现这些只能部分解释我们的发现。