Suppr超能文献

桥接神经元相关性和降维。

Bridging neuronal correlations and dimensionality reduction.

机构信息

Carnegie Mellon Neuroscience Institute, Pittsburgh, PA 15213, USA; Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

出版信息

Neuron. 2021 Sep 1;109(17):2740-2754.e12. doi: 10.1016/j.neuron.2021.06.028. Epub 2021 Jul 21.

Abstract

Two commonly used approaches to study interactions among neurons are spike count correlation, which describes pairs of neurons, and dimensionality reduction, applied to a population of neurons. Although both approaches have been used to study trial-to-trial neuronal variability correlated among neurons, they are often used in isolation and have not been directly related. We first established concrete mathematical and empirical relationships between pairwise correlation and metrics of population-wide covariability based on dimensionality reduction. Applying these insights to macaque V4 population recordings, we found that the previously reported decrease in mean pairwise correlation associated with attention stemmed from three distinct changes in population-wide covariability. Overall, our work builds the intuition and formalism to bridge between pairwise correlation and population-wide covariability and presents a cautionary tale about the inferences one can make about population activity by using a single statistic, whether it be mean pairwise correlation or dimensionality.

摘要

两种常用于研究神经元间相互作用的方法是尖峰计数相关,用于描述神经元对,以及降维,用于研究神经元群体。尽管这两种方法都被用于研究神经元间与试验相关的可变性,但它们通常是单独使用的,并没有直接相关。我们首先基于降维建立了神经元对相关和群体变异性度量之间的具体数学和经验关系。将这些见解应用于猕猴 V4 群体记录,我们发现先前报道的与注意力相关的平均神经元对相关的降低源于群体变异性的三个不同变化。总的来说,我们的工作建立了直觉和形式化的方法,将神经元对相关和群体变异性联系起来,并提供了一个关于通过使用单个统计量(无论是平均神经元对相关还是维度)对群体活动进行推断的警示故事。

相似文献

1
Bridging neuronal correlations and dimensionality reduction.桥接神经元相关性和降维。
Neuron. 2021 Sep 1;109(17):2740-2754.e12. doi: 10.1016/j.neuron.2021.06.028. Epub 2021 Jul 21.
5
6
Low rank mechanisms underlying flexible visual representations.底层低阶机制对灵活视觉表象的影响。
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29321-29329. doi: 10.1073/pnas.2005797117.
10
Five key factors determining pairwise correlations in visual cortex.决定视觉皮层中两两相关性的五个关键因素。
J Neurophysiol. 2015 Aug;114(2):1022-33. doi: 10.1152/jn.00094.2015. Epub 2015 May 27.

引用本文的文献

3
Neural Dynamics in Extrastriate Cortex Underlying False Alarms.虚报背后的纹外皮层神经动力学
J Neurosci. 2025 May 14;45(20):e1733242025. doi: 10.1523/JNEUROSCI.1733-24.2025.

本文引用的文献

2
Low rank mechanisms underlying flexible visual representations.底层低阶机制对灵活视觉表象的影响。
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29321-29329. doi: 10.1073/pnas.2005797117.
5
Fundamental bounds on the fidelity of sensory cortical coding.感觉皮层编码保真度的基本界限。
Nature. 2020 Apr;580(7801):100-105. doi: 10.1038/s41586-020-2130-2. Epub 2020 Mar 18.
6
Information-Limiting Correlations in Large Neural Populations.大规模神经元群体中的信息限制相关性。
J Neurosci. 2020 Feb 19;40(8):1668-1678. doi: 10.1523/JNEUROSCI.2072-19.2019. Epub 2020 Jan 15.
8
Single-trial neural dynamics are dominated by richly varied movements.单试次神经动力学由丰富多样的运动所主导。
Nat Neurosci. 2019 Oct;22(10):1677-1686. doi: 10.1038/s41593-019-0502-4. Epub 2019 Sep 24.
10
Bayesian Computation through Cortical Latent Dynamics.通过皮质潜在动力学进行贝叶斯计算。
Neuron. 2019 Sep 4;103(5):934-947.e5. doi: 10.1016/j.neuron.2019.06.012. Epub 2019 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验