Suppr超能文献

相关神经元活动中与注意力相关的变化源自归一化机制。

Attention-related changes in correlated neuronal activity arise from normalization mechanisms.

作者信息

Verhoef Bram-Ernst, Maunsell John H R

机构信息

Department of Neurobiology, The University of Chicago, Chicago, Illinois, USA.

Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Leuven, Belgium.

出版信息

Nat Neurosci. 2017 Jul;20(7):969-977. doi: 10.1038/nn.4572. Epub 2017 May 29.

Abstract

Attention is believed to enhance perception by altering the activity-level correlations between pairs of neurons. How attention changes neuronal activity correlations is unknown. Using multielectrodes in monkey visual cortex, we measured spike-count correlations when single or multiple stimuli were presented and when stimuli were attended or unattended. When stimuli were unattended, adding a suppressive, nonpreferred stimulus beside a preferred stimulus increased spike-count correlations between pairs of similarly tuned neurons but decreased spike-count correlations between pairs of oppositely tuned neurons. A stochastic normalization model containing populations of oppositely tuned, mutually suppressive neurons explains these changes and also explains why attention decreased or increased correlations: as an indirect consequence of attention-related changes in the inputs to normalization mechanisms. Our findings link normalization mechanisms to correlated neuronal activity and attention, showing that normalization mechanisms shape response correlations and that these correlations change when attention biases normalization mechanisms.

摘要

人们认为,注意力通过改变神经元对之间的活动水平相关性来增强感知。注意力如何改变神经元活动相关性尚不清楚。我们在猴子视觉皮层中使用多电极,测量了呈现单个或多个刺激时以及刺激被注意或未被注意时的脉冲计数相关性。当刺激未被注意时,在一个偏好刺激旁边添加一个抑制性的、非偏好刺激会增加相似调谐神经元对之间的脉冲计数相关性,但会降低相反调谐神经元对之间的脉冲计数相关性。一个包含相反调谐、相互抑制神经元群体的随机归一化模型解释了这些变化,也解释了为什么注意力会降低或增加相关性:作为归一化机制输入中与注意力相关变化的间接结果。我们的研究结果将归一化机制与相关神经元活动及注意力联系起来,表明归一化机制塑造反应相关性,并且当注意力使归一化机制产生偏差时,这些相关性会发生变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c4a/5507208/376444366038/nihms873238f1.jpg

相似文献

1
Attention-related changes in correlated neuronal activity arise from normalization mechanisms.
Nat Neurosci. 2017 Jul;20(7):969-977. doi: 10.1038/nn.4572. Epub 2017 May 29.
2
Stimulus Dependence of Correlated Variability across Cortical Areas.
J Neurosci. 2016 Jul 13;36(28):7546-56. doi: 10.1523/JNEUROSCI.0504-16.2016.
3
Tuned normalization explains the size of attention modulations.
Neuron. 2012 Feb 23;73(4):803-13. doi: 10.1016/j.neuron.2012.01.006.
4
Correlated variability and its attentional modulation depend on anatomical connectivity.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2318841121. doi: 10.1073/pnas.2318841121. Epub 2024 Aug 22.
5
Interareal Spike-Train Correlations of Anterior Cingulate and Dorsal Prefrontal Cortex during Attention Shifts.
J Neurosci. 2015 Sep 23;35(38):13076-89. doi: 10.1523/JNEUROSCI.1262-15.2015.
6
Attention can either increase or decrease spike count correlations in visual cortex.
Nat Neurosci. 2014 Nov;17(11):1591-7. doi: 10.1038/nn.3835. Epub 2014 Oct 12.
7
Attention and normalization circuits in macaque V1.
Eur J Neurosci. 2015 Apr;41(7):949-64. doi: 10.1111/ejn.12857. Epub 2015 Mar 11.
8
A normalization model suggests that attention changes the weighting of inputs between visual areas.
Proc Natl Acad Sci U S A. 2017 May 16;114(20):E4085-E4094. doi: 10.1073/pnas.1619857114. Epub 2017 May 1.
9
Attentional fluctuations induce shared variability in macaque primary visual cortex.
Nat Commun. 2018 Jul 9;9(1):2654. doi: 10.1038/s41467-018-05123-6.
10
Modulation of Spike Count Correlations Between Macaque Primary Visual Cortex Neurons by Difficulty of Attentional Task.
Neurosci Bull. 2022 May;38(5):489-504. doi: 10.1007/s12264-021-00790-w. Epub 2021 Nov 16.

引用本文的文献

1
Neuronal normalization in monkey MT is an intensity-weighted average.
bioRxiv. 2025 Jul 25:2025.07.21.665985. doi: 10.1101/2025.07.21.665985.
3
Neuronal heterogeneity of normalization strength in a circuit model.
bioRxiv. 2024 Nov 22:2024.11.22.624903. doi: 10.1101/2024.11.22.624903.
5
Adult neurogenesis improves spatial information encoding in the mouse hippocampus.
Nat Commun. 2024 Jul 30;15(1):6410. doi: 10.1038/s41467-024-50699-x.
6
Response sub-additivity and variability quenching in visual cortex.
Nat Rev Neurosci. 2024 Apr;25(4):237-252. doi: 10.1038/s41583-024-00795-0. Epub 2024 Feb 19.
8
Normalization in mouse primary visual cortex.
PLoS One. 2023 Dec 18;18(12):e0295140. doi: 10.1371/journal.pone.0295140. eCollection 2023.
9
Modeling the diverse effects of divisive normalization on noise correlations.
PLoS Comput Biol. 2023 Nov 30;19(11):e1011667. doi: 10.1371/journal.pcbi.1011667. eCollection 2023 Nov.
10
Coordinated multiplexing of information about separate objects in visual cortex.
Elife. 2022 Nov 29;11:e76452. doi: 10.7554/eLife.76452.

本文引用的文献

2
Stimulus Dependence of Correlated Variability across Cortical Areas.
J Neurosci. 2016 Jul 13;36(28):7546-56. doi: 10.1523/JNEUROSCI.0504-16.2016.
3
Relating normalization to neuronal populations across cortical areas.
J Neurophysiol. 2016 Sep 1;116(3):1375-86. doi: 10.1152/jn.00017.2016. Epub 2016 Jun 29.
4
On the Structure of Neuronal Population Activity under Fluctuations in Attentional State.
J Neurosci. 2016 Feb 3;36(5):1775-89. doi: 10.1523/JNEUROSCI.2044-15.2016.
5
Reward expectation differentially modulates attentional behavior and activity in visual area V4.
Nat Neurosci. 2015 Nov;18(11):1656-63. doi: 10.1038/nn.4141. Epub 2015 Oct 19.
6
Flexible gating of contextual influences in natural vision.
Nat Neurosci. 2015 Nov;18(11):1648-55. doi: 10.1038/nn.4128. Epub 2015 Oct 5.
7
The Nature of Shared Cortical Variability.
Neuron. 2015 Aug 5;87(3):644-56. doi: 10.1016/j.neuron.2015.06.035. Epub 2015 Jul 23.
9
Diverse coupling of neurons to populations in sensory cortex.
Nature. 2015 May 28;521(7553):511-515. doi: 10.1038/nature14273. Epub 2015 Apr 6.
10
Attention can either increase or decrease spike count correlations in visual cortex.
Nat Neurosci. 2014 Nov;17(11):1591-7. doi: 10.1038/nn.3835. Epub 2014 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验