Central Research Laboratory, Hamamatsu Photonics K. K., Hamamatsu, Japan.
Global Strategic Challenge Center, Hamamatsu Photonics K. K., Hamamatsu, Japan.
Phys Med Biol. 2021 Sep 6;66(18). doi: 10.1088/1361-6560/ac16e7.
A multilayer depth-of-interaction positron emission tomography (DOI-PET) detector with an independent readout structure has a potential advantage as a time-of-flight (TOF)-PET detector. The thin scintillator block of each detector layer can afford an improved coincidence time resolution (CTR) of ∼100 ps because the photon transfer time spread within the scintillator inherently decreases. To evaluate the potential TOF capabilities of a multilayer DOI-PET detector, which consists of thin layers of a cerium-doped lutetium-yttrium oxyorthosilicate (LYSO:Ce) scintillator coupled to a multi-pixel photon counter (MPPC) array, we examined the detector's CTR performance via Monte Carlo simulations. We used several types of scintillator structures: a monolithic plate, laser-processing array with 3.2 mm pitch, fine laser-processing array with 1.6 mm pitch, and pixelated array with 3.2 mm pitch, with 2, 4, 6, and 8 mm thickness values of a 25.6 mm × 25.6 mm scintillator cross-section. The MPPC array was composed of 3.0 mm × 3.0 mm photosensitive segments arranged in an 8 × 8 array. Here, we note that the CTR performance also significantly depends on the timing detection method, which generates a timing trigger signal for coincidence detection. Thus, we evaluated the CTRs for each scintillator structure by adopting four timing detection methods: using the total sum signal of 64 MPPC chips (T_sum), the maximum signal in the 64 MPPC chips (Max), the sum signal of a partial number of MPPC chips located at and in the vicinity of the-ray interaction position (P_sum), and the average of the timestamps generated at several MPPC chips (Ave). When using the T_sum for timing detection, the CTR full width at half-maximum values were ∼100 ps regardless of the scintillator structure. However, when using the Max signal approach, the CTRs of the monolithic plates, laser-processing arrays, and fine-pitch laser-processing arrays were drastically degraded with increasing thickness. On the other hand, the CTRs of the pixelated arrays exhibited almost no degradation. To improve the CTRs of the monolithic plate and the (fine-pitch) laser-processing array that exhibit a large light spread in the scintillator block, we applied the P_sum and Ave methods. The resulting CTRs significantly improved upon using P_sum; however, in the Ave approach the improvement effect disappeared when the thickness was <6 mm in case of our simulation.
一种具有独立读出结构的多层深度交互正电子发射断层扫描(DOI-PET)探测器作为飞行时间(TOF)-PET 探测器具有潜在优势。每个探测器层的薄闪烁体块可以提供改善的符合时间分辨率(CTR)约为 100 ps,因为闪烁体内在的光子传输时间扩展减小。为了评估由掺铈硅酸镥(LYSO:Ce)闪烁体组成的多层 DOI-PET 探测器的潜在 TOF 性能,该探测器与多像素光子计数器(MPPC)阵列耦合,我们通过蒙特卡罗模拟研究了探测器的 CTR 性能。我们使用了几种类型的闪烁体结构:整体式平板、3.2mm 间距的激光加工阵列、1.6mm 间距的精细激光加工阵列和 3.2mm 间距的像素化阵列,具有 2、4、6 和 8mm 厚度的 25.6mm×25.6mm 闪烁体横截面。MPPC 阵列由 3.0mm×3.0mm 光敏段组成,排列在 8×8 阵列中。这里,我们注意到 CTR 性能也严重依赖于定时检测方法,该方法为符合检测生成定时触发信号。因此,我们通过采用四种定时检测方法评估了每种闪烁体结构的 CTR:使用 64 个 MPPC 芯片的总和信号(T_sum)、64 个 MPPC 芯片中的最大信号(Max)、位于和附近的射线相互作用位置的部分 MPPC 芯片的和信号(P_sum)以及几个 MPPC 芯片生成的时间戳的平均值(Ave)。当使用 T_sum 进行定时检测时,无论闪烁体结构如何,CTR 半最大值全宽值均约为 100 ps。然而,当使用最大信号方法时,整体式平板、激光加工阵列和精细间距激光加工阵列的 CTR 随着厚度的增加而急剧下降。另一方面,像素化阵列的 CTR 几乎没有退化。为了提高在闪烁体块中具有较大光扩展的整体式平板和(精细间距)激光加工阵列的 CTR,我们应用了 P_sum 和 Ave 方法。使用 P_sum 显著改善了 CTR;然而,在 Ave 方法中,当厚度<6mm 时,模拟情况下的改进效果消失。