Suppr超能文献

N300:复杂视觉对象和场景预测编码的一个指标

The N300: An Index for Predictive Coding of Complex Visual Objects and Scenes.

作者信息

Kumar Manoj, Federmeier Kara D, Beck Diane M

机构信息

Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA.

Department of Psychology, Program in Neuroscience, and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Cereb Cortex Commun. 2021 Apr 21;2(2):tgab030. doi: 10.1093/texcom/tgab030. eCollection 2021.

Abstract

Predictive coding models can simulate known perceptual or neuronal phenomena, but there have been fewer attempts to identify a reliable neural signature of predictive coding for complex stimuli. In a pair of studies, we test whether the N300 component of the event-related potential, occurring 250-350-ms poststimulus-onset, has the response properties expected for such a signature of perceptual hypothesis testing at the level of whole objects and scenes. We show that N300 amplitudes are smaller to representative ("good exemplars") compared with less representative ("bad exemplars") items from natural scene categories. Integrating these results with patterns observed for objects, we establish that, across a variety of visual stimuli, the N300 is responsive to statistical regularity, or the degree to which the input is "expected" (either explicitly or implicitly) based on prior knowledge, with statistically regular images evoking a reduced response. Moreover, we show that the measure exhibits context-dependency; that is, we find the N300 sensitivity to category representativeness when stimuli are congruent with, but not when they are incongruent with, a category pre-cue. Thus, we argue that the N300 is the best candidate to date for an index of perceptual hypotheses testing for complex visual objects and scenes.

摘要

预测编码模型能够模拟已知的感知或神经元现象,但对于识别复杂刺激的预测编码的可靠神经特征,相关尝试较少。在两项研究中,我们测试事件相关电位的N300成分(在刺激开始后250 - 350毫秒出现)是否具有在整个物体和场景层面上作为感知假设检验的这种特征所预期的反应特性。我们发现,与自然场景类别中代表性较差的(“坏样本”)项目相比,N300对代表性较好的(“好样本”)项目的波幅更小。将这些结果与在物体上观察到的模式相结合,我们确定,在各种视觉刺激中,N300对统计规律性有反应,或者说对基于先验知识“预期”(无论是明确还是隐含)的输入程度有反应,统计规律的图像会引发减弱的反应。此外,我们表明该测量表现出上下文依赖性;也就是说,当刺激与类别预线索一致时,我们发现N300对类别代表性敏感,而当刺激与类别预线索不一致时则不然。因此,我们认为N300是迄今为止用于复杂视觉物体和场景的感知假设检验指标的最佳候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/601a/8171016/e9bf72cf1027/tgab030f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验