Masi L, Petrucciani T, Ferioli G, Semeghini G, Modugno G, Inguscio M, Fattori M
CNR Istituto Nazionale Ottica, 50019 Sesto Fiorentino, Italy.
European Laboratory for Nonlinear Spectroscopy (LENS), 50019 Sesto Fiorentino, Italy.
Phys Rev Lett. 2021 Jul 9;127(2):020601. doi: 10.1103/PhysRevLett.127.020601.
We report the experimental realization of a new kind of optical lattice for ultracold atoms where arbitrarily large separation between the sites can be achieved without renouncing to the stability of ordinary lattices. Two collinear lasers, with slightly different commensurate wavelengths and retroreflected on a mirror, generate a superlattice potential with a periodic "beat-note" profile where the regions with large amplitude modulation provide the effective potential minima for the atoms. To prove the analogy with a standard large spacing optical lattice we study Bloch oscillations of a Bose Einstein condensate with negligible interactions in the presence of a small force. The observed dynamics between sites separated by ten microns for times exceeding one second proves the high stability of the potential. This novel lattice is the ideal candidate for the coherent manipulation of atomic samples at large spatial separations and might find direct application in atom-based technologies like trapped-atom interferometers and quantum simulators.
我们报告了一种用于超冷原子的新型光学晶格的实验实现,其中在不放弃普通晶格稳定性的情况下,可以实现格点之间任意大的间距。两个共线激光器,具有略微不同的可公度波长,并在镜子上进行后向反射,产生具有周期性“拍频”轮廓的超晶格势,其中具有大幅度调制的区域为原子提供了有效的势阱。为了证明与标准大间距光学晶格的相似性,我们研究了在存在小力的情况下相互作用可忽略不计的玻色 - 爱因斯坦凝聚体的布洛赫振荡。在超过一秒的时间内观察到相隔十微米的格点之间的动力学,证明了势的高稳定性。这种新型晶格是在大空间间距下对原子样本进行相干操纵的理想候选者,并且可能直接应用于基于原子的技术,如俘获原子干涉仪和量子模拟器。