Yan Xuanteng, Boudrias Marie-Helene, Mitsis Georgios D
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:944-947. doi: 10.1109/EMBC44109.2020.9176488.
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that modulates brain activity, which yields promise for achieving desired behavioral outcomes in different contexts. Combining tACS with electroencephalography (EEG) allows for the monitoring of the real-time effects of stimulation. However, the EEG signal recorded with simultaneous tACS is largely contaminated by stimulation-induced artifacts. In this work, we examine the combination of the empirical wavelet transform (EWT) with three blind source separation (BSS) methods: principal component analysis (PCA), multiset canonical correlation analysis (MCCA) and independent vector analysis (IVA), aiming to remove artifacts in tACS-contaminated EEG recordings. Using simulated data, we show that EWT followed by IVA achieves the best performance. Using experimental data, we show that BSS combined with EWT performs better compared to standard BSS methodology in terms of preserving useful information while eliminating artifacts.
经颅交流电刺激(tACS)是一种非侵入性脑刺激技术,可调节大脑活动,有望在不同情境下实现预期的行为结果。将tACS与脑电图(EEG)相结合,可以监测刺激的实时效果。然而,在tACS同时进行时记录的EEG信号在很大程度上被刺激诱发的伪迹所污染。在这项工作中,我们研究了经验小波变换(EWT)与三种盲源分离(BSS)方法的组合:主成分分析(PCA)、多集典型相关分析(MCCA)和独立向量分析(IVA),旨在去除tACS污染的EEG记录中的伪迹。使用模拟数据,我们表明先进行EWT然后进行IVA可实现最佳性能。使用实验数据,我们表明在保留有用信息同时消除伪迹方面,与标准BSS方法相比,BSS与EWT相结合的方法表现更好。