School of Metallurgy and Materials, Biomaterials Research Group, Proto-cellular Biomaterials Unit, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
School of Science and Engineering, University of the Sunshine Coast, Fraser Coast Campus, Hervey Bay, QLD 4655, Australia.
Biomaterials. 2021 Sep;276:120941. doi: 10.1016/j.biomaterials.2021.120941. Epub 2021 Jun 28.
Synthetic protocells are rudimentary origin-of-life versions of natural cell counterparts. Protocells are widely engineered to advance efforts and useful accepted outcomes in synthetic biology, soft matter chemistry and bioinspired materials chemistry. Protocells in collective symbiosis generate synthetic proto-tissues that display unprecedented autonomy and yield advanced materials with desirable life-like features for smart multi-drug delivery, micro bioreactors, renewable fuel production, environmental clean-up, and medicine. Current levels of protocell and proto-tissue functionality and adaptivity are just sufficient to apply them in tissue engineering and regenerative medicine, where they animate biomaterials and increase therapeutic cell productivity. As of now, structural biomaterials for tissue engineering lack the properties of living biomaterials such as self-repair, stochasticity, cell synergy and the sequencing of molecular and cellular events. Future protocell-based biomaterials provide these core properties of living organisms, but excluding evolution. Most importantly, protocells are programmable for a broad array of cell functions and behaviors and collectively in consortia are tunable for multivariate functions. Inspired by upcoming designs of smart protocells, we review their developmental background and cover the most recently reported developments in this promising field of synthetic proto-biology. Our emphasis is on manufacturing proto-tissues for tissue engineering of organoids, stem cell niches and reprogramming and tissue formation through stages of embryonic development. We also highlight the exciting reported developments arising from fusing living cells and tissues, in a valuable hybrid symbiosis, with synthetic counterparts to bring about novel functions, and living tissue products for a new synthetic tissue engineering discipline.
合成原细胞是天然细胞对应物的原始生命起源版本。原细胞被广泛设计用于推进合成生物学、软物质化学和仿生材料化学领域的努力和有用的公认成果。集体共生的原细胞产生合成原组织,表现出前所未有的自主性,并产生具有理想类生命特征的先进材料,用于智能多药物输送、微生物反应器、可再生燃料生产、环境净化和医学。目前的原细胞和原组织的功能和适应性水平足以将它们应用于组织工程和再生医学中,在这些领域中,它们激活生物材料并提高治疗细胞的生产力。到目前为止,用于组织工程的结构生物材料缺乏活体生物材料的特性,如自我修复、随机性、细胞协同作用以及分子和细胞事件的顺序。未来基于原细胞的生物材料提供了这些生物体的核心特性,但不包括进化。最重要的是,原细胞可用于广泛的细胞功能和行为编程,并且在集体中可以针对多种变量功能进行调整。受智能原细胞即将推出的设计的启发,我们回顾了它们的发展背景,并涵盖了这个有前途的合成原生物学领域中最近报道的发展。我们的重点是制造原组织,用于类器官的组织工程、干细胞龛和通过胚胎发育阶段的重编程和组织形成。我们还强调了融合活细胞和组织的令人兴奋的报道进展,在有价值的混合共生中,与合成对应物融合,带来新的功能和用于新的合成组织工程学科的活体组织产品。