Kojima Tomoya, Asakura Kouichi, Gobbo Pierangelo, Banno Taisuke
Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, Trieste, 34127, Italy.
Adv Sci (Weinh). 2025 Apr;12(16):e2409066. doi: 10.1002/advs.202409066. Epub 2025 Feb 10.
Multicellular organisms have hierarchical structures where multiple cells collectively form tissues with complex 3D architectures and exhibit higher-order functions. Inspired by this, to date, multiple protocell models have been assembled to form tissue-like structures termed prototissues. Despite recent advances in this research area, the programmed assembly of protocells into prototissue fibers with emergent functions still represents a significant challenge. The possibility of assembling prototissue fibers will open up a way to a novel type of prototissue subunit capable of hierarchical assembly into unprecedented soft functional materials with tunable architectures, modular and distributed functionalities. Herein, the first method to fabricate freestanding vesicle-based prototissue fibers with controlled lengths and diameters is devised. Importantly, it is also shown that the fibers can be composed of different specialized modules that, for example, can endow the fiber with magnetotaxis capabilities, or that can work synergistically to take an input diffusible chemical signals and transduce it into a readable fluorescent output through a hosted enzyme cascade reaction. Overall, this research addresses an important challenge of prototissue engineering and will find important applications in 3D bio-printing, tissue engineering, and soft robotics as next-generation bioinspired materials.
多细胞生物具有层次结构,其中多个细胞共同形成具有复杂三维结构的组织,并展现出高阶功能。受此启发,迄今为止,人们已组装了多种原始细胞模型以形成称为原始组织的类组织结构。尽管该研究领域最近取得了进展,但将原始细胞编程组装成具有新兴功能的原始组织纤维仍然是一项重大挑战。组装原始组织纤维的可能性将为一种新型的原始组织亚基开辟一条道路,这种亚基能够进行层次组装,形成具有可调结构、模块化和分布式功能的前所未有的软功能材料。在此,人们设计出了第一种制造具有可控长度和直径的独立囊泡基原始组织纤维的方法。重要的是,研究还表明,这些纤维可以由不同的特殊模块组成,例如,这些模块可以赋予纤维趋磁能力,或者可以协同工作,接收输入的可扩散化学信号,并通过宿主酶级联反应将其转化为可读的荧光输出。总体而言,这项研究解决了原始组织工程中的一个重要挑战,并将在3D生物打印、组织工程和软机器人领域作为下一代生物启发材料找到重要应用。
Adv Sci (Weinh). 2025-4
Chembiochem. 2024-9-16
Nat Mater. 2018-10-8
Lab Chip. 2021-11-25
Biochem Soc Trans. 2013-10
Biochem Soc Trans. 2020-12-18
Adv Sci (Weinh). 2024-6
Angew Chem Int Ed Engl. 2024-1-2
Angew Chem Int Ed Engl. 2023-10-9
Proc Natl Acad Sci U S A. 2023-8-29