Suppr超能文献

优化虚拟 Shack-Hartmann 波前传感器。

Optimization of Virtual Shack-Hartmann Wavefront Sensing.

机构信息

Key Laboratory of Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China.

Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China.

出版信息

Sensors (Basel). 2021 Jul 9;21(14):4698. doi: 10.3390/s21144698.

Abstract

Virtual Shack-Hartmann wavefront sensing (vSHWS) can flexibly adjust parameters to meet different requirements without changing the system, and it is a promising means for aberration measurement. However, how to optimize its parameters to achieve the best performance is rarely discussed. In this work, the data processing procedure and methods of vSHWS were demonstrated by using a set of normal human ocular aberrations as an example. The shapes (round and square) of a virtual lenslet, the zero-padding of the sub-aperture electric field, sub-aperture number, as well as the sequences (before and after diffraction calculation), algorithms, and interval of data interpolation, were analyzed to find the optimal configuration. The effect of the above optimizations on its anti-noise performance was also studied. The Zernike coefficient errors and the root mean square of the wavefront error between the reconstructed and preset wavefronts were used for performance evaluation. The performance of the optimized vSHWS could be significantly improved compared to that of a non-optimized one, which was also verified with 20 sets of clinical human ocular aberrations. This work makes the vSHWS's implementation clearer, and the optimization methods and the obtained results are of great significance for its applications.

摘要

虚拟 Shack-Hartmann 波前传感器(vSHWS)可以灵活地调整参数以满足不同的要求,而无需更改系统,这是一种很有前途的像差测量手段。然而,如何优化其参数以达到最佳性能很少被讨论。在这项工作中,通过使用一组正常的人眼像差作为示例,展示了 vSHWS 的数据处理过程和方法。分析了虚拟微透镜的形状(圆形和方形)、子孔径电场的零填充、子孔径数量以及数据插值的顺序(衍射计算之前和之后)、算法和间隔,以找到最佳配置。还研究了上述优化对其抗噪声性能的影响。使用泽尼克系数误差和重构波前与预设波前之间的均方根波前误差来评估性能。与未经优化的 vSHWS 相比,优化后的 vSHWS 的性能可以得到显著提高,这也通过 20 组临床人眼像差得到了验证。这项工作使 vSHWS 的实现更加清晰,并且优化方法和获得的结果对于其应用具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38a2/8309488/45ff68f4e15d/sensors-21-04698-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验