Wang Jinyu, Léger Jean-François, Binding Jonas, Boccara A Claude, Gigan Sylvain, Bourdieu Laurent
Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, F-75005 France ; Inserm, U1024, Paris F-75005 France ; CNRS, UMR 8197, Paris, F-75005 France ; Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, ESPCI, 1 rue Jussieu, 75005 Paris, France ; Fondation Pierre-Gilles de Gennes pour la Recherche, 29 rue d'Ulm, Paris, 75005 France.
Biomed Opt Express. 2012 Oct 1;3(10):2510-25. doi: 10.1364/BOE.3.002510. Epub 2012 Sep 13.
Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.
像差限制了显微镜的分辨率、信号强度和可实现的成像深度。相干门控波前传感(CGWS)允许快速测量散射样品中的像差,从而实现自适应校正。然而,到目前为止,CGWS仅在弱散射样品中得到了验证。我们基于林尼克干涉仪和超发光二极管(SLED)光源设计了一种新的CGWS方案,该方案能够自动补偿色散,并且可以在任何显微镜上实现。在高度散射的大鼠脑组织中,落在CGWS时间门内的多次散射光子不再可以忽略不计,我们已经测量到了深度达400 µm的已知散焦和球差。