Suppr超能文献

基于蒙特卡罗模拟的无创活体血糖浓度估算。

Noninvasive In Vivo Estimation of Blood-Glucose Concentration by Monte Carlo Simulation.

机构信息

Department of Electronics Engineering, Kookmin University, Seoul 02707, Korea.

出版信息

Sensors (Basel). 2021 Jul 19;21(14):4918. doi: 10.3390/s21144918.

Abstract

Continuous monitoring of blood-glucose concentrations is essential for both diabetic and nondiabetic patients to plan a healthy lifestyle. Noninvasive in vivo blood-glucose measurements help reduce the pain of piercing human fingertips to collect blood. To facilitate noninvasive measurements, this work proposes a Monte Carlo photon simulation-based model to estimate blood-glucose concentration via photoplethysmography (PPG) on the fingertip. A heterogeneous finger model was exposed to light at 660 nm and 940 nm in the reflectance mode of PPG via Monte Carlo photon propagation. The bio-optical properties of the finger model were also deduced to design the photon simulation model for the finger layers. The intensities of the detected photons after simulation with the model were used to estimate the blood-glucose concentrations using a supervised machine-learning model, XGBoost. The XGBoost model was trained with synthetic data obtained from the Monte Carlo simulations and tested with both synthetic and real data ( = 35). For testing with synthetic data, the Pearson correlation coefficient (Pearson's r) of the model was found to be 0.91, and the coefficient of determination (R) was found to be 0.83. On the other hand, for tests with real data, the Pearson's r of the model was 0.85, and R was 0.68. Error grid analysis and Bland-Altman analysis were also performed to confirm the accuracy. The results presented herein provide the necessary steps for noninvasive in vivo blood-glucose concentration estimation.

摘要

连续监测血糖浓度对于糖尿病患者和非糖尿病患者规划健康的生活方式都是至关重要的。非侵入式的活体血糖测量有助于减少刺穿人体指尖采集血液的痛苦。为了促进非侵入式测量,这项工作提出了一种基于蒙特卡罗光子模拟的模型,通过指端光体积描记法(PPG)来估计血糖浓度。在 PPG 的反射模式下,将异质手指模型暴露在 660nm 和 940nm 的光线下,通过蒙特卡罗光子传播进行模拟。还推导出了手指模型的生物光学特性,以设计用于模拟手指层的光子模拟模型。使用监督机器学习模型 XGBoost 来估计模拟后检测到的光子强度的血糖浓度。XGBoost 模型使用从蒙特卡罗模拟中获得的合成数据进行训练,并使用合成数据和真实数据进行测试(=35)。对于使用合成数据的测试,模型的 Pearson 相关系数(Pearson's r)为 0.91,决定系数(R)为 0.83。另一方面,对于使用真实数据的测试,模型的 Pearson's r 为 0.85,R 为 0.68。还进行了误差网格分析和 Bland-Altman 分析以确认准确性。本文提供了非侵入式活体血糖浓度估计的必要步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a161/8309922/7b3761e299b4/sensors-21-04918-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验