Chellamani Narmatha, Albelwi Saleh Ali, Shanmuganathan Manimurugan, Amirthalingam Palanisamy, Alharbi Emad Muteb, Alatawi Hibah Qasem Salman, Prabahar Kousalya, Aljabri Jawhara Bader, Paul Anand
Faculty of Computers and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia.
Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.
Sensors (Basel). 2025 Mar 18;25(6):1868. doi: 10.3390/s25061868.
Diabetes, a chronic medical condition, affects millions of people worldwide and requires consistent monitoring of blood glucose levels (BGLs). Traditional invasive methods for BGL monitoring can be challenging and painful for patients. This study introduces a non-invasive, deep learning (DL)-based approach to estimate BGL using photoplethysmography (PPG) signals. Specifically, a Deep Sparse Capsule Network (DSCNet) model is proposed to provide accurate and robust BGL monitoring. The proposed model's workflow includes data collection, preprocessing, feature extraction, and predictions. A hardware module was designed using a PPG sensor and Raspberry Pi to collect patient data. In preprocessing, a Savitzky-Golay filter and moving average filter were applied to remove noise and preserve pulse form and high-frequency components. The DSCNet model was then applied to predict the sugar level. Two models were developed for prediction: a baseline model, DSCNet, and an enhanced model, DSCNet with self-attention. DSCNet's performance was evaluated using Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Relative Difference (MARD), and coefficient of determination (R), yielding values of 3.022, 0.05, 0.058, 0.062, 10.81, and 0.98, respectively.
糖尿病是一种慢性疾病,影响着全球数百万人,需要持续监测血糖水平(BGL)。传统的血糖水平监测侵入性方法对患者来说可能具有挑战性且痛苦。本研究引入了一种基于深度学习(DL)的非侵入性方法,利用光电容积脉搏波描记法(PPG)信号来估计血糖水平。具体而言,提出了一种深度稀疏胶囊网络(DSCNet)模型,以提供准确且可靠的血糖水平监测。所提出模型的工作流程包括数据收集、预处理、特征提取和预测。使用PPG传感器和树莓派设计了一个硬件模块来收集患者数据。在预处理过程中,应用了Savitzky-Golay滤波器和移动平均滤波器来去除噪声并保留脉搏形态和高频成分。然后应用DSCNet模型来预测血糖水平。开发了两种预测模型:一种基线模型DSCNet和一种增强模型,即带有自注意力机制的DSCNet。使用平均绝对百分比误差(MAPE)、平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)、平均绝对相对差(MARD)和决定系数(R)对DSCNet的性能进行评估,其值分别为3.022、0.05、0.058、0.062、10.81和0.98。
Sensors (Basel). 2025-3-18
Biosensors (Basel). 2025-4-16
IEEE Trans Neural Netw Learn Syst. 2024-10
Bioengineering (Basel). 2024-3-25
Eur Rev Med Pharmacol Sci. 2023-5
Front Bioeng Biotechnol. 2022-5-12
Sensors (Basel). 2022-4-12
Healthcare (Basel). 2022-3-16