文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于使用PPG传感器进行无创血糖水平估计的深度稀疏胶囊网络。

A Deep Sparse Capsule Network for Non-Invasive Blood Glucose Level Estimation Using a PPG Sensor.

作者信息

Chellamani Narmatha, Albelwi Saleh Ali, Shanmuganathan Manimurugan, Amirthalingam Palanisamy, Alharbi Emad Muteb, Alatawi Hibah Qasem Salman, Prabahar Kousalya, Aljabri Jawhara Bader, Paul Anand

机构信息

Faculty of Computers and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia.

Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.

出版信息

Sensors (Basel). 2025 Mar 18;25(6):1868. doi: 10.3390/s25061868.


DOI:10.3390/s25061868
PMID:40293000
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11945921/
Abstract

Diabetes, a chronic medical condition, affects millions of people worldwide and requires consistent monitoring of blood glucose levels (BGLs). Traditional invasive methods for BGL monitoring can be challenging and painful for patients. This study introduces a non-invasive, deep learning (DL)-based approach to estimate BGL using photoplethysmography (PPG) signals. Specifically, a Deep Sparse Capsule Network (DSCNet) model is proposed to provide accurate and robust BGL monitoring. The proposed model's workflow includes data collection, preprocessing, feature extraction, and predictions. A hardware module was designed using a PPG sensor and Raspberry Pi to collect patient data. In preprocessing, a Savitzky-Golay filter and moving average filter were applied to remove noise and preserve pulse form and high-frequency components. The DSCNet model was then applied to predict the sugar level. Two models were developed for prediction: a baseline model, DSCNet, and an enhanced model, DSCNet with self-attention. DSCNet's performance was evaluated using Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Relative Difference (MARD), and coefficient of determination (R), yielding values of 3.022, 0.05, 0.058, 0.062, 10.81, and 0.98, respectively.

摘要

糖尿病是一种慢性疾病,影响着全球数百万人,需要持续监测血糖水平(BGL)。传统的血糖水平监测侵入性方法对患者来说可能具有挑战性且痛苦。本研究引入了一种基于深度学习(DL)的非侵入性方法,利用光电容积脉搏波描记法(PPG)信号来估计血糖水平。具体而言,提出了一种深度稀疏胶囊网络(DSCNet)模型,以提供准确且可靠的血糖水平监测。所提出模型的工作流程包括数据收集、预处理、特征提取和预测。使用PPG传感器和树莓派设计了一个硬件模块来收集患者数据。在预处理过程中,应用了Savitzky-Golay滤波器和移动平均滤波器来去除噪声并保留脉搏形态和高频成分。然后应用DSCNet模型来预测血糖水平。开发了两种预测模型:一种基线模型DSCNet和一种增强模型,即带有自注意力机制的DSCNet。使用平均绝对百分比误差(MAPE)、平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)、平均绝对相对差(MARD)和决定系数(R)对DSCNet的性能进行评估,其值分别为3.022、0.05、0.058、0.062、10.81和0.98。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/d6e67d58b143/sensors-25-01868-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/6346cf155dab/sensors-25-01868-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/e47217c495be/sensors-25-01868-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/e691af117ee4/sensors-25-01868-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/138e2c1280ee/sensors-25-01868-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/9f8531d737d1/sensors-25-01868-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/d398f4d2230c/sensors-25-01868-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/52bcd6975a2c/sensors-25-01868-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/a059e21718f5/sensors-25-01868-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/e3f64a32a275/sensors-25-01868-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/a2a5588076fa/sensors-25-01868-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/8fb95fe889c6/sensors-25-01868-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/b2a3b1b09692/sensors-25-01868-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/d6e67d58b143/sensors-25-01868-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/6346cf155dab/sensors-25-01868-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/e47217c495be/sensors-25-01868-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/e691af117ee4/sensors-25-01868-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/138e2c1280ee/sensors-25-01868-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/9f8531d737d1/sensors-25-01868-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/d398f4d2230c/sensors-25-01868-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/52bcd6975a2c/sensors-25-01868-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/a059e21718f5/sensors-25-01868-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/e3f64a32a275/sensors-25-01868-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/a2a5588076fa/sensors-25-01868-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/8fb95fe889c6/sensors-25-01868-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/b2a3b1b09692/sensors-25-01868-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd78/11945921/d6e67d58b143/sensors-25-01868-g013.jpg

相似文献

[1]
A Deep Sparse Capsule Network for Non-Invasive Blood Glucose Level Estimation Using a PPG Sensor.

Sensors (Basel). 2025-3-18

[2]
Diabetes: Non-Invasive Blood Glucose Monitoring Using Federated Learning with Biosensor Signals.

Biosensors (Basel). 2025-4-16

[3]
Non-invasive blood glucose monitoring using PPG signals with various deep learning models and implementation using TinyML.

Sci Rep. 2025-1-2

[4]
Noninvasive Blood Glucose Monitoring Using Spatiotemporal ECG and PPG Feature Fusion and Weight-Based Choquet Integral Multimodel Approach.

IEEE Trans Neural Netw Learn Syst. 2024-10

[5]
DNN-BP: a novel framework for cuffless blood pressure measurement from optimal PPG features using deep learning model.

Med Biol Eng Comput. 2024-12

[6]
Highly Sensitive Perovskite Photoplethysmography Sensor for Blood Glucose Sensing Using Machine Learning Techniques.

Adv Sci (Weinh). 2024-11

[7]
A Continuous Non-Invasive Blood Pressure Prediction Method Based on Deep Sparse Residual U-Net Combined with Improved Squeeze and Excitation Skip Connections.

Sensors (Basel). 2024-4-24

[8]
Blood pressure estimation and classification using a reference signal-less photoplethysmography signal: a deep learning framework.

Phys Eng Sci Med. 2023-12

[9]
A two-branch framework for blood pressure estimation using photoplethysmography signals with deep learning and clinical prior physiological knowledge.

Physiol Meas. 2025-2-7

[10]
Parallel convolutional neural networks for non-invasive cardiac hemodynamic estimation: integrating uncalibrated PPG signals with nonlinear feature analysis.

Physiol Meas. 2025-3-31

本文引用的文献

[1]
ACNN-BiLSTM: A Deep Learning Approach for Continuous Noninvasive Blood Pressure Measurement Using Multi-Wavelength PPG Fusion.

Bioengineering (Basel). 2024-3-25

[2]
Mild cognitive impairment effects on diabetes self-care in Tabuk City, Saudi Arabia.

Eur Rev Med Pharmacol Sci. 2023-5

[3]
Recent applications of machine learning and deep learning models in the prediction, diagnosis, and management of diabetes: a comprehensive review.

Diabetol Metab Syndr. 2022-12-27

[4]
Machine learning models for non-invasive glucose measurement: towards diabetes management in smart healthcare.

Health Technol (Berl). 2022

[5]
Diabetes Detection and Management through Photoplethysmographic and Electrocardiographic Signals Analysis: A Systematic Review.

Sensors (Basel). 2022-6-29

[6]
Non-Invasive Blood Glucose Estimation System Based on a Neural Network with Dual-Wavelength Photoplethysmography and Bioelectrical Impedance Measuring.

Sensors (Basel). 2022-6-12

[7]
Sense and Learn: Recent Advances in Wearable Sensing and Machine Learning for Blood Glucose Monitoring and Trend-Detection.

Front Bioeng Biotechnol. 2022-5-12

[8]
Machine-Learning-Based Noninvasive In Vivo Estimation of HbA1c Using Photoplethysmography Signals.

Sensors (Basel). 2022-4-12

[9]
Diagnostic Features and Potential Applications of PPG Signal in Healthcare: A Systematic Review.

Healthcare (Basel). 2022-3-16

[10]
90% Accuracy for Photoplethysmography-Based Non-Invasive Blood Glucose Prediction by Deep Learning with Cohort Arrangement and Quarterly Measured HbA1c.

Sensors (Basel). 2021-11-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索