Suppr超能文献

使用基于 2D 视频的姿势估计来自动预测幼儿自闭症谱系障碍。

Using 2D video-based pose estimation for automated prediction of autism spectrum disorders in young children.

机构信息

Psychiatry Department, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.

AIcrowd Research, AIcrowd, Lausanne, Switzerland.

出版信息

Sci Rep. 2021 Jul 23;11(1):15069. doi: 10.1038/s41598-021-94378-z.

Abstract

Clinical research in autism has recently witnessed promising digital phenotyping results, mainly focused on single feature extraction, such as gaze, head turn on name-calling or visual tracking of the moving object. The main drawback of these studies is the focus on relatively isolated behaviors elicited by largely controlled prompts. We recognize that while the diagnosis process understands the indexing of the specific behaviors, ASD also comes with broad impairments that often transcend single behavioral acts. For instance, the atypical nonverbal behaviors manifest through global patterns of atypical postures and movements, fewer gestures used and often decoupled from visual contact, facial affect, speech. Here, we tested the hypothesis that a deep neural network trained on the non-verbal aspects of social interaction can effectively differentiate between children with ASD and their typically developing peers. Our model achieves an accuracy of 80.9% (F1 score: 0.818; precision: 0.784; recall: 0.854) with the prediction probability positively correlated to the overall level of symptoms of autism in social affect and repetitive and restricted behaviors domain. Provided the non-invasive and affordable nature of computer vision, our approach carries reasonable promises that a reliable machine-learning-based ASD screening may become a reality not too far in the future.

摘要

自闭症的临床研究最近见证了有前景的数字表型结果,主要集中在单一特征提取上,例如注视、听到名字时的转头或对移动物体的视觉跟踪。这些研究的主要缺点是关注由大量控制提示引起的相对孤立的行为。我们认识到,虽然诊断过程理解了特定行为的索引,但自闭症也伴随着广泛的障碍,这些障碍往往超越了单一的行为行为。例如,非言语行为表现为非典型姿势和运动的整体模式、使用的手势更少,而且经常与视觉接触、面部表情、言语分离。在这里,我们测试了一个假设,即经过社交互动中非言语方面训练的深度神经网络可以有效地将自闭症儿童与他们的正常发展同龄人区分开来。我们的模型在社会情感和重复限制行为领域的自闭症症状的整体水平上,具有 80.9%的准确率(F1 分数:0.818;精度:0.784;召回率:0.854),预测概率与自闭症的整体水平呈正相关。鉴于计算机视觉的非侵入性和可负担性,我们的方法具有合理的前景,即基于可靠的机器学习的自闭症筛查可能在不远的将来成为现实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce7e/8302646/2967a5ad3481/41598_2021_94378_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验