Suppr超能文献

视频-音频神经网络集成用于全面筛查幼儿自闭症谱系障碍。

Video-audio neural network ensemble for comprehensive screening of autism spectrum disorder in young children.

机构信息

Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland.

出版信息

PLoS One. 2024 Oct 3;19(10):e0308388. doi: 10.1371/journal.pone.0308388. eCollection 2024.

Abstract

A timely diagnosis of autism is paramount to allow early therapeutic intervention in preschoolers. Deep Learning tools have been increasingly used to identify specific autistic symptoms. But they also offer opportunities for broad automated detection of autism at an early age. Here, we leverage a multi-modal approach by combining two neural networks trained on video and audio features of semi-standardized social interactions in a sample of 160 children aged 1 to 5 years old. Our ensemble model performs with an accuracy of 82.5% (F1 score: 0.816, Precision: 0.775, Recall: 0.861) for screening Autism Spectrum Disorders (ASD). Additional combinations of our model were developed to achieve higher specificity (92.5%, i.e., few false negatives) or sensitivity (90%, i.e. few false positives). Finally, we found a relationship between the neural network modalities and specific audio versus video ASD characteristics, bringing evidence that our neural network implementation was effective in taking into account different features that are currently standardized under the gold standard ASD assessment.

摘要

及时诊断自闭症对于在学龄前儿童中进行早期治疗干预至关重要。深度学习工具已被越来越多地用于识别特定的自闭症症状。但它们也为在早期广泛自动检测自闭症提供了机会。在这里,我们通过结合两个神经网络,利用多模态方法,对 160 名 1 至 5 岁儿童的半标准化社交互动的视频和音频特征进行训练。我们的集成模型在筛查自闭症谱系障碍(ASD)时的准确率为 82.5%(F1 得分为 0.816,精度为 0.775,召回率为 0.861)。我们还开发了模型的其他组合,以实现更高的特异性(92.5%,即很少有假阴性)或敏感性(90%,即很少有假阳性)。最后,我们发现神经网络模态与特定的音频与视频 ASD 特征之间存在关系,这为我们的神经网络实施提供了证据,证明其在考虑当前自闭症评估金标准下的不同特征方面是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6f/11449333/169ac12fd5ea/pone.0308388.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验