Güttler Thomas, Aksu Metin, Dickmanns Antje, Stegmann Kim M, Gregor Kathrin, Rees Renate, Taxer Waltraud, Rymarenko Oleh, Schünemann Jürgen, Dienemann Christian, Gunkel Philip, Mussil Bianka, Krull Jens, Teichmann Ulrike, Groß Uwe, Cordes Volker C, Dobbelstein Matthias, Görlich Dirk
Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
Institute of Molecular Oncology, GZMB, University Medical Center, Göttingen, Germany.
EMBO J. 2021 Oct 1;40(19):e107985. doi: 10.15252/embj.2021107985. Epub 2021 Aug 9.
Monoclonal anti-SARS-CoV-2 immunoglobulins represent a treatment option for COVID-19. However, their production in mammalian cells is not scalable to meet the global demand. Single-domain (VHH) antibodies (also called nanobodies) provide an alternative suitable for microbial production. Using alpaca immune libraries against the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein, we isolated 45 infection-blocking VHH antibodies. These include nanobodies that can withstand 95°C. The most effective VHH antibody neutralizes SARS-CoV-2 at 17-50 pM concentration (0.2-0.7 µg per liter), binds the open and closed states of the Spike, and shows a tight RBD interaction in the X-ray and cryo-EM structures. The best VHH trimers neutralize even at 40 ng per liter. We constructed nanobody tandems and identified nanobody monomers that tolerate the K417N/T, E484K, N501Y, and L452R immune-escape mutations found in the Alpha, Beta, Gamma, Epsilon, Iota, and Delta/Kappa lineages. We also demonstrate neutralization of the Beta strain at low-picomolar VHH concentrations. We further discovered VHH antibodies that enforce native folding of the RBD in the E. coli cytosol, where its folding normally fails. Such "fold-promoting" nanobodies may allow for simplified production of vaccines and their adaptation to viral escape-mutations.
单克隆抗SARS-CoV-2免疫球蛋白是治疗COVID-19的一种选择。然而,在哺乳动物细胞中生产它们无法扩大规模以满足全球需求。单域(VHH)抗体(也称为纳米抗体)提供了一种适合微生物生产的替代方案。利用羊驼针对SARS-CoV-2刺突蛋白受体结合域(RBD)的免疫文库,我们分离出45种具有感染阻断作用的VHH抗体。其中包括能够耐受95°C的纳米抗体。最有效的VHH抗体在17-50 pM浓度(每升0.2-0.7微克)下可中和SARS-CoV-2,能结合刺突蛋白的开放和闭合状态,并且在X射线和冷冻电镜结构中显示出与RBD的紧密相互作用。最佳的VHH三聚体甚至在每升40纳克时仍具有中和作用。我们构建了纳米抗体串联体,并鉴定出能耐受在Alpha、Beta、Gamma、Epsilon、Iota和Delta/Kappa谱系中发现的K417N/T、E484K、N501Y和L452R免疫逃逸突变的纳米抗体单体。我们还证明了在低皮摩尔VHH浓度下对Beta毒株的中和作用。我们进一步发现了能在大肠杆菌胞质溶胶中促使RBD天然折叠的VHH抗体,而在该环境中其正常折叠通常会失败。这种“促进折叠”的纳米抗体可能会简化疫苗生产并使其适应病毒逃逸突变。