Suppr超能文献

骆驼科小鼠和羊驼来源的纳米抗体中和 SARS-CoV-2 变体。

Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants.

机构信息

Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD, USA.

Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA.

出版信息

Nature. 2021 Jul;595(7866):278-282. doi: 10.1038/s41586-021-03676-z. Epub 2021 Jun 7.

Abstract

Since the start of the COVID-19 pandemic, SARS-CoV-2 has caused millions of deaths worldwide. Although a number of vaccines have been deployed, the continual evolution of the receptor-binding domain (RBD) of the virus has challenged their efficacy. In particular, the emerging variants B.1.1.7, B.1.351 and P.1 (first detected in the UK, South Africa and Brazil, respectively) have compromised the efficacy of sera from patients who have recovered from COVID-19 and immunotherapies that have received emergency use authorization. One potential alternative to avert viral escape is the use of camelid VHHs (variable heavy chain domains of heavy chain antibody (also known as nanobodies)), which can recognize epitopes that are often inaccessible to conventional antibodies. Here, we isolate anti-RBD nanobodies from llamas and from mice that we engineered to produce VHHs cloned from alpacas, dromedaries and Bactrian camels. We identified two groups of highly neutralizing nanobodies. Group 1 circumvents antigenic drift by recognizing an RBD region that is highly conserved in coronaviruses but rarely targeted by human antibodies. Group 2 is almost exclusively focused to the RBD-ACE2 interface and does not neutralize SARS-CoV-2 variants that carry E484K or N501Y substitutions. However, nanobodies in group 2 retain full neutralization activity against these variants when expressed as homotrimers, and-to our knowledge-rival the most potent antibodies against SARS-CoV-2 that have been produced to date. These findings suggest that multivalent nanobodies overcome SARS-CoV-2 mutations through two separate mechanisms: enhanced avidity for the ACE2-binding domain and recognition of conserved epitopes that are largely inaccessible to human antibodies. Therefore, although new SARS-CoV-2 mutants will continue to emerge, nanobodies represent promising tools to prevent COVID-19 mortality when vaccines are compromised.

摘要

自 COVID-19 大流行开始以来,SARS-CoV-2 已在全球范围内导致数百万人死亡。尽管已经部署了多种疫苗,但病毒受体结合域(RBD)的持续进化一直对其疗效构成挑战。特别是,新出现的 B.1.1.7、B.1.351 和 P.1 变体(分别在英国、南非和巴西首次发现)削弱了从 COVID-19 中康复的患者血清和已获得紧急使用授权的免疫疗法的功效。一种避免病毒逃逸的潜在替代方法是使用骆驼科 VHH(重链抗体的可变重链结构域(也称为纳米抗体)),它可以识别通常无法被常规抗体识别的表位。在这里,我们从美洲驼和我们设计的从羊驼、单峰驼和双峰驼中产生 VHH 的小鼠中分离出抗 RBD 纳米抗体。我们鉴定了两组高度中和的纳米抗体。第 1 组通过识别冠状病毒中高度保守但很少被人类抗体靶向的 RBD 区域来规避抗原漂移。第 2 组几乎完全集中在 RBD-ACE2 界面上,不能中和携带 E484K 或 N501Y 取代的 SARS-CoV-2 变体。然而,当作为同源三聚体表达时,第 2 组的纳米抗体保留对这些变体的完全中和活性,并且-据我们所知-与迄今为止产生的针对 SARS-CoV-2 的最有效抗体相媲美。这些发现表明,多价纳米抗体通过两种独立的机制克服 SARS-CoV-2 突变:增强对 ACE2 结合域的亲和力和识别对人类抗体基本上不可及的保守表位。因此,尽管新的 SARS-CoV-2 突变体将继续出现,但当疫苗受到影响时,纳米抗体代表预防 COVID-19 死亡率的有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8827/8260353/0e61146ae508/41586_2021_3676_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验