Suppr超能文献

恒河猴中的位置推断。

Positional inference in rhesus macaques.

机构信息

Department of Neuroscience, Columbia University Medical Center, New York, NY, 10027, USA.

Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA.

出版信息

Anim Cogn. 2022 Feb;25(1):73-93. doi: 10.1007/s10071-021-01536-x. Epub 2021 Jul 24.

Abstract

Understanding how organisms make transitive inferences is critical to understanding their general ability to learn serial relationships. In this context, transitive inference (TI) can be understood as a specific heuristic that applies broadly to many different serial learning tasks, which have been the focus of hundreds of studies involving dozens of species. In the present study, monkeys learned the order of 7-item lists of photographic stimuli by trial and error, and were then tested on "derived" lists. These derived test lists combined stimuli from multiple training lists in ambiguous ways, sometimes changing their order relative to training. We found that subjects displayed strong preferences when presented with novel test pairs, even when those pairs were drawn from different training lists. These preferences were helpful when test pairs had an ordering congruent with their ranks during training, but yielded consistently below-chance performance when pairs had an incongruent order relative to training. This behavior can be explained by the joint contributions of transitive inference and another heuristic that we refer to as "positional inference." Positional inferences play a complementary role to transitive inferences in facilitating choices between novel pairs of stimuli. The theoretical framework that best explains both transitive and positional inferences is a spatial model that represents both the position of each stimulus and its uncertainty. A computational implementation of this framework yields accurate predictions about both correct responses and errors on derived lists.

摘要

理解生物如何进行传递性推理对于理解它们学习序列关系的一般能力至关重要。在这种情况下,可以将传递性推理 (TI) 理解为一种广泛适用于许多不同序列学习任务的特定启发式方法,这些任务一直是涉及数十种物种的数百项研究的重点。在本研究中,猴子通过试错学习了 7 项照片刺激物的列表顺序,然后在“衍生”列表上进行测试。这些衍生的测试列表以模糊的方式将来自多个训练列表的刺激物组合在一起,有时会相对于训练改变它们的顺序。我们发现,当呈现新的测试对时,即使这些测试对来自不同的训练列表,被试也会表现出强烈的偏好。当测试对的顺序与其在训练中的等级一致时,这些偏好是有帮助的,但当测试对的顺序与训练不一致时,它们的表现始终低于机会水平。这种行为可以通过传递性推理和我们称之为“位置推理”的另一种启发式方法的共同作用来解释。位置推理在促进新的刺激对之间的选择方面,与传递性推理相辅相成。最能解释传递性推理和位置推理的理论框架是一种空间模型,该模型同时表示每个刺激物的位置及其不确定性。该框架的计算实现可以对衍生列表上的正确响应和错误做出准确预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验