Suppr超能文献

转录因子动力学和染色质组织中的相分离。

Phase separation in transcription factor dynamics and chromatin organization.

机构信息

Department of Physics, University of Maryland, College Park, MD, 20742, USA; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

Department of Physics, University of Maryland, College Park, MD, 20742, USA; Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA.

出版信息

Curr Opin Struct Biol. 2021 Dec;71:148-155. doi: 10.1016/j.sbi.2021.06.009. Epub 2021 Jul 22.

Abstract

Studies over the past decade have highlighted the key role of liquid-liquid phase separation in cellular organization and function. Dynamic compartmentalization of transcription factors and coactivators by such phase-separated condensates regulates the assembly of transcriptional machinery at genomic loci. Although rapid advances in microscopy have demonstrated the ubiquity of such condensates, a rigorous characterization of the physics of phase separation in transcription remains to be carried out. In this review, we discuss theoretical and experimental evidence for biomolecular condensates as dynamic regulators of transcription. Looking beyond, we highlight functional consequences for transcription factor dynamics and gene expression and discuss potential pitfalls of misclassifying biomolecular condensates as liquid droplets in the absence of a rigorous physical description.

摘要

过去十年的研究强调了液-液相分离在细胞组织和功能中的关键作用。转录因子和共激活因子通过这种相分离凝聚物的动态分隔来调节基因组位置转录机器的组装。尽管显微镜的快速发展已经证明了这种凝聚物的普遍性,但在转录中相分离的物理特性的严格表征仍有待进行。在这篇综述中,我们讨论了生物分子凝聚物作为转录动态调节剂的理论和实验证据。展望未来,我们强调了转录因子动力学和基因表达的功能后果,并讨论了在没有严格物理描述的情况下将生物分子凝聚物错误分类为液滴的潜在陷阱。

相似文献

1
Phase separation in transcription factor dynamics and chromatin organization.
Curr Opin Struct Biol. 2021 Dec;71:148-155. doi: 10.1016/j.sbi.2021.06.009. Epub 2021 Jul 22.
2
Interplay of dynamic genome organization and biomolecular condensates.
Curr Opin Cell Biol. 2023 Dec;85:102252. doi: 10.1016/j.ceb.2023.102252. Epub 2023 Oct 6.
3
Nuclear Protein Condensates and Their Properties in Regulation of Gene Expression.
J Mol Biol. 2022 Jan 15;434(1):167151. doi: 10.1016/j.jmb.2021.167151. Epub 2021 Jul 14.
4
Super-Enhancers, Phase-Separated Condensates, and 3D Genome Organization in Cancer.
Cancers (Basel). 2022 Jun 10;14(12):2866. doi: 10.3390/cancers14122866.
5
Spatial genome organization, TGFβ, and biomolecular condensates: Do they talk during development?
Bioessays. 2022 Dec;44(12):e2200145. doi: 10.1002/bies.202200145. Epub 2022 Oct 17.
6
Stochastic particle unbinding modulates growth dynamics and size of transcription factor condensates in living cells.
Proc Natl Acad Sci U S A. 2022 Aug 2;119(31):e2200667119. doi: 10.1073/pnas.2200667119. Epub 2022 Jul 26.
7
Transcriptional condensates and phase separation: condensing information across scales and mechanisms.
Nucleus. 2023 Dec;14(1):2213551. doi: 10.1080/19491034.2023.2213551.
8
Function moves biomolecular condensates in phase space.
Bioessays. 2022 May;44(5):e2200001. doi: 10.1002/bies.202200001. Epub 2022 Mar 3.
9
Biomolecular Condensates: Structure, Functions, Methods of Research.
Biochemistry (Mosc). 2024 Jan;89(Suppl 1):S205-S223. doi: 10.1134/S0006297924140116.
10
Biomolecular Condensates at the Front: Cell Migration Meets Phase Separation.
Trends Cell Biol. 2021 Mar;31(3):145-148. doi: 10.1016/j.tcb.2020.12.002. Epub 2021 Jan 2.

引用本文的文献

1
Deep learning in chromatin organization: from super-resolution microscopy to clinical applications.
Cell Mol Life Sci. 2025 Aug 29;82(1):323. doi: 10.1007/s00018-025-05837-z.
2
Mineralocorticoid receptor phase separation modulates cardiac preservation.
Nat Cardiovasc Res. 2025 May 19. doi: 10.1038/s44161-025-00653-x.
3
Synthesis and Characterization of Phase-Separated Extracellular Condensates in Interactions with Cells.
bioRxiv. 2025 Mar 26:2025.03.24.644961. doi: 10.1101/2025.03.24.644961.
5
Dynamic properties of transcriptional condensates modulate CRISPRa-mediated gene activation.
Nat Commun. 2025 Feb 14;16(1):1640. doi: 10.1038/s41467-025-56735-8.
10
Liquid-Liquid Phase Separation in the Prognosis of Lung Adenocarcinoma: An Integrated Analysis.
Curr Cancer Drug Targets. 2025;25(4):323-334. doi: 10.2174/0115680096345676241001081051.

本文引用的文献

1
Mechanical Regulation of Transcription: Recent Advances.
Trends Cell Biol. 2021 Jun;31(6):457-472. doi: 10.1016/j.tcb.2021.02.008. Epub 2021 Mar 9.
3
Co-condensation between transcription factor and coactivator p300 modulates transcriptional bursting kinetics.
Mol Cell. 2021 Apr 15;81(8):1682-1697.e7. doi: 10.1016/j.molcel.2021.01.031. Epub 2021 Mar 1.
4
Bridging-induced phase separation induced by cohesin SMC protein complexes.
Sci Adv. 2021 Feb 10;7(7). doi: 10.1126/sciadv.abe5905. Print 2021 Feb.
6
Condensed Chromatin Behaves like a Solid on the Mesoscale In Vitro and in Living Cells.
Cell. 2020 Dec 23;183(7):1772-1784.e13. doi: 10.1016/j.cell.2020.11.027. Epub 2020 Dec 15.
7
Protein condensates as aging Maxwell fluids.
Science. 2020 Dec 11;370(6522):1317-1323. doi: 10.1126/science.aaw4951.
8
A framework for understanding the functions of biomolecular condensates across scales.
Nat Rev Mol Cell Biol. 2021 Mar;22(3):215-235. doi: 10.1038/s41580-020-00303-z. Epub 2020 Nov 9.
10
The Self-Organizing Genome: Principles of Genome Architecture and Function.
Cell. 2020 Oct 1;183(1):28-45. doi: 10.1016/j.cell.2020.09.014. Epub 2020 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验