Suppr超能文献

功能在相空间中移动生物分子凝聚物。

Function moves biomolecular condensates in phase space.

作者信息

Feric Marina, Misteli Tom

机构信息

National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

Bioessays. 2022 May;44(5):e2200001. doi: 10.1002/bies.202200001. Epub 2022 Mar 3.

Abstract

Phase separation underlies the formation of biomolecular condensates. We hypothesize the cellular processes that occur within condensates shape their structural features. We use the example of transcription to discuss structure-function relationships in condensates. Various types of transcriptional condensates have been reported across the evolutionary spectrum in the cell nucleus as well as in mitochondrial and bacterial nucleoids. In vitro and in vivo observations suggest that transcriptional activity of condensates influences their supramolecular structure, which in turn affects their function. Condensate organization thus becomes driven by differences in miscibility among the DNA and proteins of the transcription machinery and the RNA transcripts they generate. These considerations are in line with the notion that cellular processes shape the structural properties of condensates, leading to a dynamic, mutual interplay between structure and function in the cell.

摘要

相分离是生物分子凝聚物形成的基础。我们推测,凝聚物中发生的细胞过程塑造了它们的结构特征。我们以转录为例来讨论凝聚物中的结构-功能关系。在细胞核、线粒体和细菌类核的整个进化谱系中,已经报道了各种类型的转录凝聚物。体外和体内观察表明,凝聚物的转录活性会影响其超分子结构,而超分子结构又会反过来影响其功能。因此,凝聚物的组织是由转录机制的DNA、蛋白质以及它们产生的RNA转录本之间混溶性的差异驱动的。这些观点与细胞过程塑造凝聚物结构特性的观点一致,从而导致细胞中结构与功能之间动态的相互作用。

相似文献

1
Function moves biomolecular condensates in phase space.
Bioessays. 2022 May;44(5):e2200001. doi: 10.1002/bies.202200001. Epub 2022 Mar 3.
2
Mesoscale structure-function relationships in mitochondrial transcriptional condensates.
Proc Natl Acad Sci U S A. 2022 Oct 11;119(41):e2207303119. doi: 10.1073/pnas.2207303119. Epub 2022 Oct 3.
3
Hydration free energy is a significant predictor of globular protein incorporation into condensates.
bioRxiv. 2025 Jul 7:2025.07.03.663089. doi: 10.1101/2025.07.03.663089.
5
An Image Analysis Pipeline for Quantifying the Features of Fluorescently-Labeled Biomolecular Condensates in Cells.
Front Bioinform. 2022 Jun 6;2:897238. doi: 10.3389/fbinf.2022.897238. eCollection 2022.
6
Small Molecules Influence the Physical Microenvironment of Biomolecular Condensates.
J Am Chem Soc. 2025 Jul 2;147(26):22686-22696. doi: 10.1021/jacs.5c04180. Epub 2025 Jun 15.
7
RNA-associated nuclear condensates: Where the nucleus keeps its RNAs in check.
Mol Cells. 2025 Aug;48(8):100240. doi: 10.1016/j.mocell.2025.100240. Epub 2025 Jun 15.

引用本文的文献

2
Hallmarks of glucocorticoid receptor condensates involvement in transcription regulation.
iScience. 2025 May 15;28(6):112678. doi: 10.1016/j.isci.2025.112678. eCollection 2025 Jun 20.
5
Biomolecular condensates - extant relics or evolving microcompartments?
Commun Biol. 2023 Jun 21;6(1):656. doi: 10.1038/s42003-023-04963-3.
6
Transcriptional condensates and phase separation: condensing information across scales and mechanisms.
Nucleus. 2023 Dec;14(1):2213551. doi: 10.1080/19491034.2023.2213551.
7
Functional characteristics and computational model of abundant hyperactive loci in the human genome.
bioRxiv. 2024 Aug 4:2023.02.05.527203. doi: 10.1101/2023.02.05.527203.

本文引用的文献

1
Mesoscale structure-function relationships in mitochondrial transcriptional condensates.
Proc Natl Acad Sci U S A. 2022 Oct 11;119(41):e2207303119. doi: 10.1073/pnas.2207303119. Epub 2022 Oct 3.
2
Phase Transition of Catenated DNA Networks in Poly(ethylene glycol) Solutions.
ACS Macro Lett. 2021 Nov 16;10(11):1429-1435. doi: 10.1021/acsmacrolett.1c00463. Epub 2021 Nov 3.
3
Nucleobase Clustering Contributes to the Formation and Hollowing of Repeat-Expansion RNA Condensate.
J Am Chem Soc. 2022 Mar 23;144(11):4716-4720. doi: 10.1021/jacs.1c12085. Epub 2022 Feb 18.
4
The TFAM-to-mtDNA ratio defines inner-cellular nucleoid populations with distinct activity levels.
Cell Rep. 2021 Nov 23;37(8):110000. doi: 10.1016/j.celrep.2021.110000.
5
Xist nucleates local protein gradients to propagate silencing across the X chromosome.
Cell. 2021 Dec 9;184(25):6174-6192.e32. doi: 10.1016/j.cell.2021.10.022. Epub 2021 Nov 4.
6
RNA promotes the formation of spatial compartments in the nucleus.
Cell. 2021 Nov 11;184(23):5775-5790.e30. doi: 10.1016/j.cell.2021.10.014. Epub 2021 Nov 4.
7
The flexibility-based modulation of DNA nanostar phase separation.
Nanoscale. 2021 Oct 28;13(41):17638-17647. doi: 10.1039/d1nr03495b.
8
RNA polymerase II clusters form in line with surface condensation on regulatory chromatin.
Mol Syst Biol. 2021 Sep;17(9):e10272. doi: 10.15252/msb.202110272.
9
ERα is an RNA-binding protein sustaining tumor cell survival and drug resistance.
Cell. 2021 Sep 30;184(20):5215-5229.e17. doi: 10.1016/j.cell.2021.08.036. Epub 2021 Sep 23.
10
Nucleation landscape of biomolecular condensates.
Nature. 2021 Nov;599(7885):503-506. doi: 10.1038/s41586-021-03905-5. Epub 2021 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验