Suppr超能文献

短期可塑性解释了工作记忆任务中不规则持续活动的原因。

Short-term plasticity explains irregular persistent activity in working memory tasks.

机构信息

Laboratory of Neurophysics and Physiology and Institute of Neuroscience and Cognition, University Paris Descartes, 75270 Paris Cedex 06, France.

出版信息

J Neurosci. 2013 Jan 2;33(1):133-49. doi: 10.1523/JNEUROSCI.3455-12.2013.

Abstract

Persistent activity in cortex is the neural correlate of working memory (WM). In persistent activity, spike trains are highly irregular, even more than in baseline. This seemingly innocuous feature challenges our current understanding of the synaptic mechanisms underlying WM. Here we argue that in WM the prefrontal cortex (PFC) operates in a regime of balanced excitation and inhibition and that the observed temporal irregularity reflects this regime. We show that this requires that nonlinearities underlying the persistent activity are primarily in the neuronal interactions between PFC neurons. We also show that short-term synaptic facilitation can be the physiological substrate of these nonlinearities and that the resulting mechanism of balanced persistent activity is robust, in particular with respect to changes in the connectivity. As an example, we put forward a computational model of the PFC circuit involved in oculomotor delayed response task. The novelty of this model is that recurrent excitatory synapses are facilitating. We demonstrate that this model displays direction-selective persistent activity. We find that, even though the memory eventually degrades because of the heterogeneities, it can be stored for several seconds for plausible network size and connectivity. This model accounts for a large number of experimental findings, such as the findings that have shown that firing is more irregular during the persistent state than during baseline, that the neuronal responses are very diverse, and that the preferred directions during cue and delay periods are strongly correlated but tuning widths are not.

摘要

皮层中的持续活动是工作记忆 (WM) 的神经相关物。在持续活动中,尖峰序列高度不规则,甚至比基线时更不规则。这一看似无害的特征挑战了我们目前对 WM 背后的突触机制的理解。在这里,我们认为在 WM 中,前额叶皮层 (PFC) 处于兴奋和抑制平衡的状态,而观察到的时间不规则性反映了这种状态。我们表明,这需要 PFC 神经元之间的神经元相互作用中的非线性主要是在持久活动的基础上。我们还表明,短期突触易化可以作为这些非线性的生理基础,并且由此产生的平衡持久活动的机制是稳健的,特别是对于连接性的变化。作为一个例子,我们提出了一个涉及眼球运动延迟反应任务的 PFC 电路的计算模型。该模型的新颖之处在于,递归兴奋性突触是促进性的。我们证明了这个模型显示了方向选择性的持久活动。我们发现,即使由于异质性,记忆最终会退化,但对于合理的网络大小和连接性,它可以存储数秒。该模型解释了大量的实验结果,例如,已经表明在持续状态下的放电比基线时更不规则,神经元反应非常多样化,并且在提示和延迟期间的首选方向强烈相关但调谐宽度不相关。

相似文献

6
Plasticity of Persistent Activity and Its Constraints.持续活动的可塑性及其限制。
Front Neural Circuits. 2020 May 7;14:15. doi: 10.3389/fncir.2020.00015. eCollection 2020.
9
Mnemonic Encoding and Cortical Organization in Parietal and Prefrontal Cortices.顶叶和前额叶皮质中的记忆编码与皮质组织
J Neurosci. 2017 Jun 21;37(25):6098-6112. doi: 10.1523/JNEUROSCI.3903-16.2017. Epub 2017 May 24.

引用本文的文献

8
Neural heterogeneity controls computations in spiking neural networks.神经多样性控制着尖峰神经网络的计算。
Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2311885121. doi: 10.1073/pnas.2311885121. Epub 2024 Jan 10.
9
Learning efficient representations of environmental priors in working memory.在工作记忆中学习环境先验的有效表示。
PLoS Comput Biol. 2023 Nov 9;19(11):e1011622. doi: 10.1371/journal.pcbi.1011622. eCollection 2023 Nov.

本文引用的文献

3
Genetic and cognitive windows into circuit mechanisms of psychiatric disease.精神疾病电路机制的遗传和认知窗口。
Trends Neurosci. 2012 Jan;35(1):3-13. doi: 10.1016/j.tins.2011.11.007. Epub 2011 Dec 16.
4
Short-Term Facilitation may Stabilize Parametric Working Memory Trace.短期促进可能稳定参数工作记忆痕迹。
Front Comput Neurosci. 2011 Oct 24;5:40. doi: 10.3389/fncom.2011.00040. eCollection 2011.
7
The asynchronous state in cortical circuits.皮质电路中的异步状态。
Science. 2010 Jan 29;327(5965):587-90. doi: 10.1126/science.1179850.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验