Suppr超能文献

一种基于机器学习的聚类协议,用于从纯音听力图确定助听器初始配置。

A Machine Learning Based Clustering Protocol for Determining Hearing Aid Initial Configurations from Pure-Tone Audiograms.

作者信息

Belitz Chelzy, Ali Hussnain, Hansen John H L

机构信息

CRSS: Center for Robust Speech Systems, The University of Texas at Dallas, Richardson, TX, USA.

出版信息

Interspeech. 2019 Sep;2019:2325-2329. doi: 10.21437/interspeech.2019-3091.

Abstract

Of the nearly 35 million people in the USA who are hearing impaired, only an estimated 25% use hearing aids (HA). A good number of HAs are prescribed but not used partially because of the time to convergence for best operation between the audiologist and user. To improve HA retention, it is suggested that a machine learning (ML) protocol could be established which improves initial HA configurations given a user's pure-tone audiogram. This study examines a ML clustering method to predict the best initial HA fitting from a corpus of over 90,000 audiogram-fitting pairs collected from hearing centers throughout the USA. We first examine the final HA comfort targets to determine a limited number of preset configurations using several multi-dimensional clustering methods (Birch, Ward, and k-means). The goal is to reduce the amount of adjustments between the centroid, selected as a fitting configuration to represent the cluster, and the final HA configurations. This may be used to reduce the adjustment cycles for HAs or as preset starting configurations for personal sound amplification products (PSAPs). Using various classification methods, audiograms are mapped to a limited number of potential preset configurations. Finally, the average adjustment between the preset fitting targets and the final fitting targets is examined.

摘要

在美国近3500万听力受损者中,估计只有25%的人使用助听器(HA)。相当数量的助听器已被开出处方,但却未被使用,部分原因是听力学家和使用者之间达到最佳操作的磨合时间问题。为了提高助听器的留存率,有人建议可以建立一种机器学习(ML)协议,根据用户的纯音听力图来改善初始助听器配置。本研究考察了一种机器学习聚类方法,以从美国各地听力中心收集的9万多对听力图-适配对的语料库中预测最佳的初始助听器适配情况。我们首先检查最终的助听器舒适度目标,使用几种多维聚类方法(Birch、Ward和k均值)来确定有限数量的预设配置。目标是减少作为代表聚类的适配配置所选的质心与最终助听器配置之间的调整量。这可用于减少助听器的调整周期,或作为个人声音放大产品(PSAP)的预设起始配置。使用各种分类方法,将听力图映射到有限数量的潜在预设配置。最后,检查预设适配目标与最终适配目标之间的平均调整情况。

相似文献

3
Pure tone audiogram classification using deep learning techniques.使用深度学习技术进行纯音听力图分类。
Clin Otolaryngol. 2024 Sep;49(5):595-603. doi: 10.1111/coa.14170. Epub 2024 May 15.
10
Predictors of daily assessed hearing aid use and hearing capability using visual analogue scales.
Br J Audiol. 1996 Feb;30(1):27-35. doi: 10.3109/03005369609077927.

本文引用的文献

1
Personal Sound Amplifiers for Adults with Hearing Loss.适用于听力损失成人的个人扩音器。
Am J Med. 2016 Mar;129(3):245-50. doi: 10.1016/j.amjmed.2015.09.014. Epub 2015 Oct 21.
2
Why do people fitted with hearing aids not wear them?为什么有人配了助听器却不戴?
Int J Audiol. 2013 May;52(5):360-8. doi: 10.3109/14992027.2013.769066. Epub 2013 Mar 11.
3
Prevalence of hearing aid use among older adults in the United States.美国老年人使用助听器的情况。
Arch Intern Med. 2012 Feb 13;172(3):292-3. doi: 10.1001/archinternmed.2011.1408.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验