Tsai Chia Hsuan, Ren Peng, Elyasi Fatemeh, Manduchi Roberto
Dept. of Computer Science & Engineering, University of California, Santa Cruz.
Proc IEEE Int Conf Pervasive Comput Commun. 2021 Mar;2021:117-122. doi: 10.1109/PerComWorkshops51409.2021.9431082. Epub 2021 May 25.
We present a comparative analysis of inertial-based odometry algorithms for the purpose of assisted return. An assisted return system facilitates backtracking of a path previously taken, and can be particularly useful for blind pedestrians. We present a new algorithm for path matching, and test it in simulated assisted return tasks with data from WeAllWalk, the only existing data set with inertial data recorded from blind walkers. We consider two odometry systems, one based on deep learning (RoNIN), and the second based on robust turn detection and step counting. Our results show that the best path matching results are obtained using the turns/steps odometry system.
我们针对辅助返回的目的,对基于惯性的里程计算法进行了比较分析。辅助返回系统有助于回溯之前走过的路径,对盲人行人尤其有用。我们提出了一种新的路径匹配算法,并在模拟辅助返回任务中使用来自WeAllWalk的数据集进行测试,WeAllWalk是唯一现有的记录盲人步行者惯性数据的数据集。我们考虑了两种里程计系统,一种基于深度学习(RoNIN),另一种基于稳健的转弯检测和步数计算。我们的结果表明,使用转弯/步数里程计系统可获得最佳的路径匹配结果。