Suppr超能文献

基于惯性测量单元(IMU)的6自由度里程计的端到端学习框架。

End-to-End Learning Framework for IMU-Based 6-DOF Odometry.

作者信息

Silva do Monte Lima João Paulo, Uchiyama Hideaki, Taniguchi Rin-Ichiro

机构信息

Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife 52171-900, Brazil.

Voxar Labs, Centro de Informática, Universidade Federal de Pernambuco, Recife 50740-560, Brazil.

出版信息

Sensors (Basel). 2019 Aug 31;19(17):3777. doi: 10.3390/s19173777.

Abstract

This paper presents an end-to-end learning framework for performing 6-DOF odometry by using only inertial data obtained from a low-cost IMU. The proposed inertial odometry method allows leveraging inertial sensors that are widely available on mobile platforms for estimating their 3D trajectories. For this purpose, neural networks based on convolutional layers combined with a two-layer stacked bidirectional LSTM are explored from the following three aspects. First, two 6-DOF relative pose representations are investigated: one based on a vector in the spherical coordinate system, and the other based on both a translation vector and an unit quaternion. Second, the loss function in the network is designed with the combination of several 6-DOF pose distance metrics: mean squared error, translation mean absolute error, quaternion multiplicative error and quaternion inner product. Third, a multi-task learning framework is integrated to automatically balance the weights of multiple metrics. In the evaluation, qualitative and quantitative analyses were conducted with publicly-available inertial odometry datasets. The best combination of the relative pose representation and the loss function was the translation and quaternion together with the translation mean absolute error and quaternion multiplicative error, which obtained more accurate results with respect to state-of-the-art inertial odometry techniques.

摘要

本文提出了一种端到端学习框架,用于仅使用从低成本惯性测量单元(IMU)获得的惯性数据来执行六自由度里程计。所提出的惯性里程计方法允许利用移动平台上广泛可用的惯性传感器来估计其三维轨迹。为此,从以下三个方面探索了基于卷积层与两层堆叠双向长短期记忆网络(LSTM)相结合的神经网络。第一,研究了两种六自由度相对位姿表示:一种基于球坐标系中的向量,另一种基于平移向量和单位四元数。第二,网络中的损失函数通过结合几种六自由度位姿距离度量来设计:均方误差、平移平均绝对误差、四元数乘法误差和四元数内积。第三,集成了多任务学习框架以自动平衡多个度量的权重。在评估中,使用公开可用的惯性里程计数据集进行了定性和定量分析。相对位姿表示和损失函数的最佳组合是平移和四元数以及平移平均绝对误差和四元数乘法误差,相对于现有惯性里程计技术,其获得了更准确结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb6/6749526/13a41a99eae0/sensors-19-03777-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验