Tsai Chia Hsuan, Manduchi Roberto
Department of Computer Science & Engineering, University of California, Santa Cruz, Santa Cruz, USA.
Int Conf Indoor Position Indoor Navig. 2024 Oct;2024. doi: 10.1109/ipin62893.2024.10786145. Epub 2024 Dec 12.
Navigating unfamiliar environments can be challenging for visually impaired individuals due to difficulties in recognizing distant landmarks or visual cues. This work focuses on a particular form of wayfinding, specifically backtracking a previously taken path, which can be useful for blind pedestrians. We propose a hands-free indoor navigation solution using a smartphone without relying on pre-existing maps or external infrastructure. Our hybrid matching method integrates machine learning to enhance positioning accuracy, addressing real-life challenges such as odometry errors or deviations from the correct path. Testing with datasets from visually impaired individuals demonstrates the potential of our approach in providing reliable backtracking assistance.
对于视障人士来说,由于难以识别远处的地标或视觉线索,在不熟悉的环境中导航可能具有挑战性。这项工作专注于一种特定形式的寻路,特别是回溯之前走过的路径,这对盲人行人可能有用。我们提出了一种无需依赖预先存在的地图或外部基础设施的、使用智能手机的免提室内导航解决方案。我们的混合匹配方法集成了机器学习以提高定位精度,解决诸如里程计误差或偏离正确路径等现实生活中的挑战。对视障人士数据集的测试证明了我们的方法在提供可靠的回溯辅助方面的潜力。