Suppr超能文献

不确定性下特征重要性估计的高效沙普利解释

Efficient Shapley Explanation For Features Importance Estimation Under Uncertainty.

作者信息

Li Xiaoxiao, Zhou Yuan, Dvornek Nicha C, Gu Yufeng, Ventola Pamela, Duncan James S

机构信息

Biomedical Engineering, Yale University, New Haven, CT, USA.

Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.

出版信息

Med Image Comput Comput Assist Interv. 2020;12261:792-801. doi: 10.1007/978-3-030-59710-8_77. Epub 2020 Sep 29.

Abstract

Complex deep learning models have shown their impressive power in analyzing high-dimensional medical image data. To increase the trust of applying deep learning models in medical field, it is essential to understand why a particular prediction was reached. Data feature importance estimation is an important approach to understand both the model and the underlying properties of data. Shapley value explanation (SHAP) is a technique to fairly evaluate input feature importance of a given model. However, the existing SHAP-based explanation works have limitations such as 1) computational complexity, which hinders their applications on high-dimensional medical image data; 2) being sensitive to noise, which can lead to serious errors. Therefore, we propose an uncertainty estimation method for the feature importance results calculated by SHAP. Then we theoretically justify the methods under a Shapley value framework. Finally we evaluate our methods on MNIST and a public neuroimaging dataset. We show the potential of our method to discover disease related biomarkers from neuroimaging data.

摘要

复杂的深度学习模型在分析高维医学图像数据方面展现出了令人印象深刻的能力。为了提高深度学习模型在医学领域应用的可信度,理解特定预测结果的达成原因至关重要。数据特征重要性估计是理解模型和数据潜在属性的重要方法。夏普利值解释(SHAP)是一种公平评估给定模型输入特征重要性的技术。然而,现有的基于SHAP的解释工作存在局限性,例如:1)计算复杂度,这阻碍了它们在高维医学图像数据上的应用;2)对噪声敏感,这可能导致严重错误。因此,我们针对SHAP计算的特征重要性结果提出了一种不确定性估计方法。然后我们在夏普利值框架下从理论上证明了这些方法的合理性。最后,我们在MNIST和一个公共神经影像数据集上评估了我们的方法。我们展示了我们的方法从神经影像数据中发现疾病相关生物标志物的潜力。

相似文献

1
Efficient Shapley Explanation For Features Importance Estimation Under Uncertainty.
Med Image Comput Comput Assist Interv. 2020;12261:792-801. doi: 10.1007/978-3-030-59710-8_77. Epub 2020 Sep 29.
2
Explanation of machine learning models using shapley additive explanation and application for real data in hospital.
Comput Methods Programs Biomed. 2022 Feb;214:106584. doi: 10.1016/j.cmpb.2021.106584. Epub 2021 Dec 10.
3
Manifold-based Shapley explanations for high dimensional correlated features.
Neural Netw. 2024 Dec;180:106634. doi: 10.1016/j.neunet.2024.106634. Epub 2024 Aug 14.
4
Fast Hierarchical Games for Image Explanations.
IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):4494-4503. doi: 10.1109/TPAMI.2022.3189849. Epub 2023 Mar 7.
5
Explanation-Driven Deep Learning Model for Prediction of Brain Tumour Status Using MRI Image Data.
Front Genet. 2022 Mar 14;13:822666. doi: 10.3389/fgene.2022.822666. eCollection 2022.
6
Efficient Interpretation of Deep Learning Models Using Graph Structure and Cooperative Game Theory: Application to ASD Biomarker Discovery.
Inf Process Med Imaging. 2019 Jun;11492:718-730. doi: 10.1007/978-3-030-20351-1_56. Epub 2019 May 22.
7
Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions.
J Comput Aided Mol Des. 2020 Oct;34(10):1013-1026. doi: 10.1007/s10822-020-00314-0. Epub 2020 May 2.
8
Shapley variable importance cloud for interpretable machine learning.
Patterns (N Y). 2022 Feb 22;3(4):100452. doi: 10.1016/j.patter.2022.100452. eCollection 2022 Apr 8.
9
CVD22: Explainable artificial intelligence determination of the relationship of troponin to D-Dimer, mortality, and CK-MB in COVID-19 patients.
Comput Methods Programs Biomed. 2023 May;233:107492. doi: 10.1016/j.cmpb.2023.107492. Epub 2023 Mar 18.

引用本文的文献

1
Gait stability prediction through synthetic time-series and vision-based data.
Front Sports Act Living. 2025 Aug 13;7:1646146. doi: 10.3389/fspor.2025.1646146. eCollection 2025.
4
A Perspective on Artificial Intelligence for Molecular Pathologists.
J Mol Diagn. 2025 May;27(5):323-335. doi: 10.1016/j.jmoldx.2025.01.005. Epub 2025 Feb 13.
5
Insights to aging prediction with AI based epigenetic clocks.
Epigenomics. 2025 Jan;17(1):49-57. doi: 10.1080/17501911.2024.2432854. Epub 2024 Nov 25.

本文引用的文献

2
Biomarkers in autism.
Front Psychiatry. 2014 Aug 12;5:100. doi: 10.3389/fpsyt.2014.00100. eCollection 2014.
4
The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism.
Mol Psychiatry. 2014 Jun;19(6):659-67. doi: 10.1038/mp.2013.78. Epub 2013 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验