Suppr超能文献

利用相互接近度提高基因组轨迹之间的距离度量。

Improving distance measures between genomic tracks with mutual proximity.

机构信息

Laboratoire Structure et Instabilité des Génomes - INSERM U1154 - CNRS 7196 Muséum National d'Histoire Naturelle - 43, rue Cuvier - 75005 Paris, France.

Laboratoire de Physique Théorique de la Matière Condensée Sorbonne Université - 4, Place Jussieu - 75005 Paris, France.

出版信息

Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab266.

Abstract

An increasing number of genomic tracks such as DNA methylation, histone modifications or transcriptomes are being produced to annotate genomes with functional states. The comparison of such high dimensional vectors obtained under various experimental conditions requires the use of a distance or dissimilarity measure. Pearson, Cosine and $L_{p}$-norm distances are commonly used for both count and binary vectors. In this article, we highlight how enhancement methods such as the contrast increasing mutual proximity' (MP) or local scaling' improve common distance measures. We present a systematic approach to evaluate the performance of such enhanced distance measures in terms of separability of groups of experimental replicates to outline their effect. We show that the MP' applied on the various distance measures drastically increases performance. Depending on the type of epigenetic experiment, MP' coupled together with Pearson, Cosine, $L_1$, Yule or Jaccard distances proves to be highly efficient in discriminating epigenomic profiles.

摘要

越来越多的基因组轨迹,如 DNA 甲基化、组蛋白修饰或转录组,被用来对基因组的功能状态进行注释。为了比较在各种实验条件下获得的这种高维向量,需要使用距离或不相似度度量。Pearson、Cosine 和 $L_{p}$ 范数距离通常用于计数和二进制向量。在本文中,我们强调了增强方法,如“对比度增加的互近”(MP)或“局部缩放”如何改进常见的距离度量。我们提出了一种系统的方法来评估这些增强的距离度量在实验重复组的可分离性方面的性能,以概述它们的效果。我们表明,应用于各种距离度量的 MP 极大地提高了性能。根据表观遗传学实验的类型,MP 与 Pearson、Cosine、$L_1$、Yule 或 Jaccard 距离相结合,在区分表观基因组图谱方面非常有效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验