Suppr超能文献

双翻转角 IR-FLASH 结合自旋历史映射用于 B1+校正的 T1 映射:在 T1 心血管磁共振多任务中的应用。

Dual flip-angle IR-FLASH with spin history mapping for B1+ corrected T1 mapping: Application to T1 cardiovascular magnetic resonance multitasking.

机构信息

Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.

Siemens Medical Solutions USA, Inc., Los Angeles, California, USA.

出版信息

Magn Reson Med. 2021 Dec;86(6):3182-3191. doi: 10.1002/mrm.28935. Epub 2021 Jul 26.

Abstract

PURPOSE

To develop a single-scan method for -corrected T mapping and apply it for free-breathing (FB) cardiac MR multitasking without electrocardiogram (ECG) triggering.

METHODS

One dual flip-angle (2FA) inversion recovery (IR)-FLASH scan provides two observations of (apparent T ) corresponding to two distinct combinations of the nominal FA α and . Spatiotemporally coregistered T and spin history maps are obtained by fitting the 2FA signal model. T estimate accuracy and repeatability for single flip-angle (1FA) and 2FA IR-FLASH sequence MR multitasking were evaluated at 3T. A T phantom was first imaged on the scanner table, then on two human subjects' thoraxes in both breath-hold (BH) and FB conditions. IR-turbo spin echo (IR-TSE) static phantom T measurements served as reference. In 10 healthy subjects, myocardial T was evaluated with ECG-free, FB multitasking sequences alongside ECG-triggered BH MOLLI.

RESULTS

For phantom-on-table T estimates, 2FA agreed better with IR-TSE (intraclass correlation coefficient [ICC] = 0.996, mean error ± SD = -1.6% ± 1.9%) than did 1FA (ICC = 0.922; mean error ± SD = -4.3% ± 12%). For phantom-on-thorax, 2FA was more repeatable and robust to respiration than 1FA (coefficient of variation [CoV] = 1.2% 2FA, = 11.3% 1FA). In vivo, in intrasession T repeatability, 2FA (septal CoV = 2.4%, six-segment CoV = 4.4%) outperformed 1FA (septal CoV = 3.1%, six-segment CoV = 5.5%). In six-segment T homogeneity, 2FA (CoV = 7.9%) also outperformed 1FA (CoV = 11.1%).

CONCLUSION

The 2FA IR-FLASH improves T estimate accuracy and repeatability over 1FA IR-FLASH, and enables single-scan -corrected T mapping without BHs or ECG when used with MR multitasking.

摘要

目的

开发一种用于校正 T 映射的单次扫描方法,并将其应用于无需心电图 (ECG) 触发的自由呼吸 (FB) 心脏磁共振多任务成像。

方法

单次双翻转角 (2FA) 反转恢复 (IR)-FLASH 扫描可提供两个对应于名义翻转角 (FA)α和的两个不同组合的观测值(表观 T)。通过拟合 2FA 信号模型,获得时空配准的 T 和自旋历史图。在 3T 上评估了单翻转角 (1FA) 和 2FA IR-FLASH 序列多任务成像的 T 估计准确性和可重复性。首先在扫描仪台上对 T 体模进行成像,然后在两个人体胸部进行屏气 (BH) 和 FB 两种条件下的成像。IR-涡轮自旋回波 (IR-TSE) 静态体模 T 测量作为参考。在 10 名健康受试者中,使用无 ECG、FB 多任务成像序列评估心肌 T,同时进行 ECG 触发 BH MOLLI。

结果

对于体模台上的 T 估计值,2FA 与 IR-TSE 的一致性更好(组内相关系数 [ICC] = 0.996,平均误差 ± SD = -1.6% ± 1.9%),而 1FA 的一致性较差(ICC = 0.922;平均误差 ± SD = -4.3% ± 12%)。对于体模在胸部的情况,2FA 比 1FA 更具可重复性且对呼吸更稳健(变异性 [CoV] = 1.2% 2FA,= 11.3% 1FA)。在体内,在单次扫描 T 重复性方面,2FA(间隔 CoV = 2.4%,六节段 CoV = 4.4%)优于 1FA(间隔 CoV = 3.1%,六节段 CoV = 5.5%)。在六节段 T 均匀性方面,2FA(CoV = 7.9%)也优于 1FA(CoV = 11.1%)。

结论

2FA IR-FLASH 提高了 T 估计的准确性和重复性,优于 1FA IR-FLASH,并且当与磁共振多任务成像结合使用时,可以在不进行 BH 和 ECG 的情况下实现单次扫描校正 T 映射。

相似文献

3
Simultaneous Multi-Slice Cardiac MR Multitasking for Motion-Resolved, Non-ECG, Free-Breathing T1-T2 Mapping.
Front Cardiovasc Med. 2022 Mar 4;9:833257. doi: 10.3389/fcvm.2022.833257. eCollection 2022.
4
Free-breathing, non-ECG, continuous myocardial T mapping with cardiovascular magnetic resonance multitasking.
Magn Reson Med. 2019 Apr;81(4):2450-2463. doi: 10.1002/mrm.27574. Epub 2018 Nov 19.
7
Native myocardial T mapping using inversion recovery T-weighted turbo field echo sequence.
Radiol Phys Technol. 2024 Jun;17(2):425-432. doi: 10.1007/s12194-024-00795-w. Epub 2024 Mar 26.
8
Free-breathing 3D cardiac T mapping with transmit B correction at 3T.
Magn Reson Med. 2022 Apr;87(4):1832-1845. doi: 10.1002/mrm.29097. Epub 2021 Nov 23.
9
Flip angle-optimized fast dynamic T1 mapping with a 3D gradient echo sequence.
Magn Reson Med. 2015 Mar;73(3):1158-63. doi: 10.1002/mrm.25199. Epub 2014 Mar 17.

引用本文的文献

1
B1 corrected T1 mapping in the differentiation and prediction of breast cancer.
Sci Rep. 2025 Aug 21;15(1):30785. doi: 10.1038/s41598-025-15590-9.
2
Alternating low-rank tensor reconstruction for improved multiparametric mapping with cardiovascular MR Multitasking.
Magn Reson Med. 2024 Oct;92(4):1421-1439. doi: 10.1002/mrm.30131. Epub 2024 May 10.
3
The future of cardiovascular magnetic resonance: All-in-one vs. real-time (Part 1).
J Cardiovasc Magn Reson. 2024 Summer;26(1):100997. doi: 10.1016/j.jocmr.2024.100997. Epub 2024 Jan 17.
4
Cardiac MR Fingerprinting: Overview, Technical Developments, and Applications.
J Magn Reson Imaging. 2024 Nov;60(5):1753-1773. doi: 10.1002/jmri.29206. Epub 2023 Dec 28.
5
Deep image prior cine MR fingerprinting with B spin history correction.
Magn Reson Med. 2024 May;91(5):2010-2027. doi: 10.1002/mrm.29979. Epub 2023 Dec 14.
6
Motion-compensated T mapping in cardiovascular magnetic resonance imaging: a technical review.
Front Cardiovasc Med. 2023 Sep 8;10:1160183. doi: 10.3389/fcvm.2023.1160183. eCollection 2023.
7
Free-breathing myocardial T mapping using inversion-recovery radial FLASH and motion-resolved model-based reconstruction.
Magn Reson Med. 2023 Apr;89(4):1368-1384. doi: 10.1002/mrm.29521. Epub 2022 Nov 20.
8
The Road Toward Reproducibility of Parametric Mapping of the Heart: A Technical Review.
Front Cardiovasc Med. 2022 May 6;9:876475. doi: 10.3389/fcvm.2022.876475. eCollection 2022.
9
Simultaneous Multi-Slice Cardiac MR Multitasking for Motion-Resolved, Non-ECG, Free-Breathing T1-T2 Mapping.
Front Cardiovasc Med. 2022 Mar 4;9:833257. doi: 10.3389/fcvm.2022.833257. eCollection 2022.
10
Cardiac MR: From Theory to Practice.
Front Cardiovasc Med. 2022 Mar 3;9:826283. doi: 10.3389/fcvm.2022.826283. eCollection 2022.

本文引用的文献

1
T1 Mapping Quantifies Spinal Cord Compression in Patients With Various Degrees of Cervical Spinal Canal Stenosis.
Front Neurol. 2020 Oct 30;11:574604. doi: 10.3389/fneur.2020.574604. eCollection 2020.
3
Fast myocardial T mapping using cardiac motion correction.
Magn Reson Med. 2020 Feb;83(2):438-451. doi: 10.1002/mrm.27935. Epub 2019 Aug 16.
4
T1- and ECV-mapping in clinical routine at 3 T: differences between MOLLI, ShMOLLI and SASHA.
BMC Med Imaging. 2019 Aug 1;19(1):59. doi: 10.1186/s12880-019-0362-0.
5
Free-running 3D whole heart myocardial T mapping with isotropic spatial resolution.
Magn Reson Med. 2019 Oct;82(4):1331-1342. doi: 10.1002/mrm.27811. Epub 2019 May 17.
6
Magnetic resonance imaging T1 relaxation times for the liver, pancreas and spleen in healthy children at 1.5 and 3 tesla.
Pediatr Radiol. 2019 Jul;49(8):1018-1024. doi: 10.1007/s00247-019-04411-7. Epub 2019 May 2.
7
Free-breathing, non-ECG, continuous myocardial T mapping with cardiovascular magnetic resonance multitasking.
Magn Reson Med. 2019 Apr;81(4):2450-2463. doi: 10.1002/mrm.27574. Epub 2018 Nov 19.
8
Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging.
Nat Biomed Eng. 2018 Apr;2(4):215-226. doi: 10.1038/s41551-018-0217-y. Epub 2018 Apr 9.
9
Simultaneous high-resolution cardiac T mapping and cine imaging using model-based iterative image reconstruction.
Magn Reson Med. 2019 Feb;81(2):1080-1091. doi: 10.1002/mrm.27474. Epub 2018 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验