Suppr超能文献

交替低秩张量重建,提高心血管磁共振多任务成像的多参数映射。

Alternating low-rank tensor reconstruction for improved multiparametric mapping with cardiovascular MR Multitasking.

机构信息

Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.

Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.

出版信息

Magn Reson Med. 2024 Oct;92(4):1421-1439. doi: 10.1002/mrm.30131. Epub 2024 May 10.

Abstract

PURPOSE

To develop a novel low-rank tensor reconstruction approach leveraging the complete acquired data set to improve precision and repeatability of multiparametric mapping within the cardiovascular MR Multitasking framework.

METHODS

A novel approach that alternated between estimation of temporal components and spatial components using the entire data set acquired (i.e., including navigator data and imaging data) was developed to improve reconstruction. The precision and repeatability of the proposed approach were evaluated on numerical simulations, 10 healthy subjects, and 10 cardiomyopathy patients at multiple scan times for 2D myocardial T/T mapping with MR Multitasking and were compared with those of the previous navigator-derived fixed-basis approach.

RESULTS

In numerical simulations, the proposed approach outperformed the previous fixed-basis approach with lower T and T error against the ground truth at all scan times studied and showed better motion fidelity. In human subjects, the proposed approach showed no significantly different sharpness or T/T measurement and significantly improved T precision by 20%-25%, T precision by 10%-15%, T repeatability by about 30%, and T repeatability by 25%-35% at 90-s and 50-s scan times The proposed approach at the 50-s scan time also showed comparable results with that of the previous fixed-basis approach at the 90-s scan time.

CONCLUSION

The proposed approach improved precision and repeatability for quantitative imaging with MR Multitasking while maintaining comparable motion fidelity, T/T measurement, and septum sharpness and had the potential for further reducing scan time from 90 s to 50 s.

摘要

目的

开发一种新的低秩张量重建方法,利用完整的采集数据集来提高心血管磁共振多任务框架中多参数映射的精度和可重复性。

方法

开发了一种新的方法,交替使用整个数据集(即包括导航数据和成像数据)来估计时间分量和空间分量,以提高重建精度。该方法的精度和重复性在数值模拟、10 名健康受试者和 10 名心肌病患者的多扫描时间进行了评估,用于 2D 心肌 T/T 映射的磁共振多任务,并与之前基于导航的固定基方法进行了比较。

结果

在数值模拟中,与之前的固定基方法相比,该方法在所有研究的扫描时间内都具有更低的 T 和 T 误差,并且具有更好的运动保真度。在人体受试者中,该方法在 90 秒和 50 秒扫描时间下,在锐度或 T/T 测量方面没有显著差异,T 精度显著提高了 20%-25%,T 重复性提高了 10%-15%,T 重复性提高了约 30%,T 重复性提高了 25%-35%。该方法在 50 秒扫描时间也具有与之前的固定基方法在 90 秒扫描时间相当的结果。

结论

该方法在保持可比运动保真度、T/T 测量和中隔锐度的同时,提高了磁共振多任务的定量成像精度和重复性,并有潜力将扫描时间从 90 秒进一步缩短至 50 秒。

相似文献

9
Fast myocardial T mapping using cardiac motion correction.使用心脏运动校正的快速心肌 T 映射。
Magn Reson Med. 2020 Feb;83(2):438-451. doi: 10.1002/mrm.27935. Epub 2019 Aug 16.

本文引用的文献

3
T2 mapping in myocardial disease: a comprehensive review.心肌疾病的 T2 映射:全面综述。
J Cardiovasc Magn Reson. 2022 Jun 6;24(1):33. doi: 10.1186/s12968-022-00866-0.
6
Whole-brain steady-state CEST at 3 T using MR Multitasking.使用 MR 多任务处理在 3T 下进行全脑稳态 CEST。
Magn Reson Med. 2022 May;87(5):2363-2371. doi: 10.1002/mrm.29109. Epub 2021 Nov 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验