Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
National Institute for Research and Development of Isotopic and Molecular Technologies, Integrated Electron Microscopy Laboratory, Cluj-Napoca, Romania.
Cytoskeleton (Hoboken). 2021 May;78(5):177-184. doi: 10.1002/cm.21681. Epub 2021 Aug 6.
Microtubules are highly dynamic cellular filaments and an accurate control of their length is important for many intracellular processes like cell division. Among other factors, microtubule length is actively modulated by motors from the kinesin superfamily. For example, yeast kinesin-8, Kip3, motors depolymerize microtubules by a cooperative, force- and length-dependent mechanism. However, whether single motors can also depolymerize microtubules is unclear. Here, we measured how single kinesin motors influenced the stability of microtubules in an in vitro assay. Using label-free interference reflection microscopy, we determined the spontaneous microtubule depolymerization rate of stabilized microtubules in the presence of kinesins. Surprisingly, we found that both single Kip3 and nondepolymerizing kinesin-1 transport motors, used as a control, stabilized microtubules further. For Kip3, this behavior is contrary to the collective force-dependent depolymerization activity of multiple motors. Because of the control measurement, the finding may hint at a more general stabilization mechanism. The complex, concentration-dependent interaction with microtubule ends provides new insights into the molecular mechanism of kinesin-8 and its regulatory function of microtubule length.
微管是高度动态的细胞丝,其长度的精确控制对于细胞分裂等许多细胞内过程非常重要。除其他因素外,微管长度还受到驱动蛋白超家族的马达的主动调节。例如,酵母 kinesin-8,Kip3,马达通过协同、力和长度依赖性机制解聚微管。然而,单个马达是否也可以解聚微管尚不清楚。在这里,我们在体外测定中测量了单个驱动蛋白马达如何影响微管的稳定性。使用无标记的干涉反射显微镜,我们确定了在存在驱动蛋白的情况下稳定微管的自发微管解聚速率。令人惊讶的是,我们发现单个 Kip3 和非解聚的 kinesin-1 运输马达(用作对照)进一步稳定了微管。对于 Kip3 来说,这种行为与多个马达的集体力依赖性解聚活性相反。由于控制测量,这一发现可能暗示了一种更普遍的稳定机制。与微管末端的复杂、浓度依赖性相互作用为 kinesin-8 的分子机制及其对微管长度的调节功能提供了新的见解。