Suppr超能文献

驱动蛋白马达相互作用的分子机制影响其在微管晶格和末端的停留时间。

Molecular mechanism of interaction between kinesin motors affecting their residence times on microtubule lattice and end.

机构信息

Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China.

出版信息

J Theor Biol. 2023 Aug 21;571:111556. doi: 10.1016/j.jtbi.2023.111556. Epub 2023 Jun 9.

Abstract

Kinesin superfamily can be classified into 14 subfamilies. Some families of kinesin motors such as kinesin-1 are responsible for long-distance intracellular transports and thus the motors are required to reside on the microtubule (MT) lattice for a longer time than at the end. Some families such as kinesin-8 Kip3 and kinesin-5 Eg5 are responsible for the regulation of MT length by depolymerizing or polymerizing the MT from the plus end and thus the motors are required to reside at the MT end for a long time. Under the crowded condition of the motors, it was found experimentally that the residence times of the kinesin-8 Kip3 and kinesin-5 Eg5 at the MT end are reduced greatly compared to the single-motor case. However, the underlying mechanism of different families of kinesin motors having different MT-end residence times is unknown. The molecular mechanism by which the interaction between the two motors greatly reduces the residence time of the motor at the MT end is elusive. In addition, during the processive stepping on the MT lattice, when two kinesin motors meet it is unknown how the interaction between them affects their dissociation rates. To address the above unclear issues, here we make a consistent and theoretical study of the residence times of the kinesin-1, kinesin-8 Kip3 and kinesin-5 Eg5 motors on the MT lattice and at the end under both the single-motor condition and multiple-motors or crowded condition.

摘要

驱动蛋白超家族可以分为 14 个子家族。一些驱动蛋白马达家族,如驱动蛋白-1,负责长距离的细胞内运输,因此马达需要在微管(MT)晶格上停留更长的时间,而不是在末端。一些家族,如驱动蛋白-8 Kip3 和驱动蛋白-5 Eg5,通过从正端解聚或聚合 MT 来负责 MT 长度的调节,因此马达需要在 MT 末端长时间停留。在马达拥挤的情况下,实验发现驱动蛋白-8 Kip3 和驱动蛋白-5 Eg5 在 MT 末端的停留时间与单马达情况相比大大减少。然而,不同家族的驱动蛋白马达具有不同的 MT 末端停留时间的潜在机制尚不清楚。两个马达之间的相互作用大大降低马达在 MT 末端停留时间的分子机制还不清楚。此外,在 MT 晶格上进行连续的步进过程中,当两个驱动蛋白马达相遇时,它们之间的相互作用如何影响它们的解离速率尚不清楚。为了解决上述不清楚的问题,我们在这里对驱动蛋白-1、驱动蛋白-8 Kip3 和驱动蛋白-5 Eg5 马达在单马达和多马达或拥挤条件下在 MT 晶格和末端上的停留时间进行了一致的理论研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验