Arellano-Santoyo Hugo, Geyer Elisabeth A, Stokasimov Ema, Chen Geng-Yuan, Su Xiaolei, Hancock William, Rice Luke M, Pellman David
Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA.
Department of Biophysics, UT Southwestern, Dallas, TX 75390, USA.
Dev Cell. 2017 Jul 10;42(1):37-51.e8. doi: 10.1016/j.devcel.2017.06.011.
Kinesin-8 motors regulate the size of microtubule structures, using length-dependent accumulation at the plus end to preferentially disassemble long microtubules. Despite extensive study, the kinesin-8 depolymerase mechanism remains under debate. Here, we provide evidence for an alternative, tubulin curvature-sensing model of microtubule depolymerization by the budding yeast kinesin-8, Kip3. Kinesin-8/Kip3 uses ATP hydrolysis, like other kinesins, for stepping on the microtubule lattice, but at the plus end Kip3 undergoes a switch: its ATPase activity is suppressed when it binds tightly to the curved conformation of tubulin. This prolongs plus-end binding, stabilizes protofilament curvature, and ultimately promotes microtubule disassembly. The tubulin curvature-sensing model is supported by our identification of Kip3 structural elements necessary and sufficient for plus-end binding and depolymerase activity, as well as by the identification of an α-tubulin residue specifically required for the Kip3-curved tubulin interaction. Together, these findings elucidate a major regulatory mechanism controlling the size of cellular microtubule structures.
驱动蛋白-8通过在正端依赖长度的积累来优先拆解长微管,从而调节微管结构的大小。尽管经过了广泛研究,但驱动蛋白-8解聚酶机制仍存在争议。在此,我们为芽殖酵母驱动蛋白-8(Kip3)介导的微管解聚的另一种微管蛋白曲率传感模型提供了证据。与其他驱动蛋白一样,驱动蛋白-8/Kip3利用ATP水解在微管晶格上移动,但在正端Kip3会发生转变:当它紧密结合微管蛋白的弯曲构象时,其ATP酶活性受到抑制。这延长了正端结合,稳定了原丝曲率,并最终促进微管解聚。微管蛋白曲率传感模型得到了我们对Kip3正端结合和解聚酶活性所必需且充分的结构元件的鉴定的支持,以及对Kip3与弯曲微管蛋白相互作用特别需要的α-微管蛋白残基的鉴定的支持。这些发现共同阐明了控制细胞微管结构大小的主要调节机制。